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Introduction

@ We study fast solution to the Disjunctive Temporal
Problem (DTP)

@ We present CircuitTSAT that uses circuit-based
approaches similar to [Bryant et al, 2007] for DTPs.
@ We show that structure of the DTP is amenable to
circuit representations

@ We explore how our approach compares with other
approaches to other DTP solvers and discuss the
advantages and disadvantages of CircuitTSAT



Motivating Example
Scheduling

@ Consider set of N events {X;}
@ The i-th event has duration d;
@ Some events must occur before others:

Xi <Xj

@ Single Resources: force events to be disjoint

Xi<Xj \/Xj<xi
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Motivating Example
Scheduling

@ Consider set of N events {X;}
@ The i-th event has duration d;
@ Some events must occur before others:

X; — X > d

A simple temporal constraint!

@ Single Resources: force events to be disjoint
Xj—XiZdi V Xi—ijdj

A disjunction of simple temporal constraints



Simple Temporal Problems

@ An STP is characterized by

Q Asetofevents: X = {Xg,X1... Xn}
@ A set of simple temporal constraints (STCs) of the
form
LB(i,j) < Xj — Xi < UB(i,j)

@ A solution is an assignment X" satisfying all STCs

@ STPs can be efficiently solved using shortest path
algorithms [Dechter et al, 1991]



Disjunctive Temporal Problems

@ A DTP is characterized by
@ Events: X = {Xg,X1... Xn}
@ Disjunctive temporal constraints (DTCs) of the form

S1(z1) V S2(z2) V...V Sk(zk)
where Sy (zk) is an STC of the form
Kig = Xji = Zk

for a pair of temporal variables
@ A solution is an assignment X satisfies every DTCs.
@ Solving DTPs are NP-hard in general.



@ TSAT++ [Armando et al, 2000, Armando et al, 2004]
@ Each STC is represented by a propositional variable
@ Satisfying the resulting SAT instance yields an STP
@ Consistency of the induced STP finds DTP solutions

@ Satisfiability Modulo Theories (SMT) Solvers
@ SMT solvers generalize SAT instances
@ Domain-specific functions replace Boolean variables
@ DTPs can be cast as SMT(DL)

@ UCLID [Bryant et al, 2002, Bryant et al, 2007]
@ UCLID SMT solver employs circuit-based expansions
@ Modern SMT solvers outperform circuit-based

approaches
@ We re-explore circuit-based approaches for DTPs



CircuitTSAT

A circuit-based approach to DTPs




Representing STCs as Circuits

@ Let X and Y be integral variables.
@ Further, suppose both are between 0 and Q.
@ Then both can represented by q = [log, Q] bits:

X = (Xq,Xg-1---X1)
Y = (YaYo-1.--Y1)
@ X — Y can then be represented as a circuit:

X Y
I

| 1's complement |

adder do=+1

!

XY




Representing STCs as Circuits

Sum and Carry Bits

a Xa 2 X1
T X f
dq d: idy
P : % :
| /o000 _J— do=1
Sq ' Sz '51

@ The X — Y difference circuit produces sum S and
carry D bits:

S = (Sq;Sq-1---S1)
D = (dg,dgq—1...d1,do=1)

@ Since X >0andY >0, X —Y cannot overflow.
@ Further, dq indicates the sign of X —Y:

dg & X-Y>0



Representing STCs as Circuits

Auxiliary Variables for X —Y >0

Consider a Full Adder Circuit

o+

We construct auxiliary variables d;

d < [(Xi@yi)/\di_l]\/(xi/\yi)
& [(Xi\/yi)/\di_l]\/(xi/\)_/i)



Representing STCs as Circuits

ExtendingtoY — X <z

@ Constraintsof X —Y >0extendtoY — X < z.
@ By regrouping, we convert it to 2 sums:

X=Y)+z>0



Representing STCs as Circuits

ExtendingtoY — X <z

@ Constraintsof X —Y >0extendtoY — X < z.
@ By regrouping, we convert it to 2 sums:

(X-Y) 4z>0
—_————

1Stterm =S

@ The 1Sl is the difference between two variables: S.



Representing STCs as Circuits

ExtendingtoY — X <z

@ Constraintsof X —Y >0extendtoY — X < z.
@ By regrouping, we convert it to 2 sums:

S+z >0
N——

2nd term

@ The an adds a constant to that difference.



Representing STCs as Circuits

ExtendingtoY — X <z

@ Constraintsof X —Y >0extendtoY — X < z.
@ By regrouping, we convert it to 2 sums:

S+z>0

@ We need a circuitforS+z >0



Representing STCs as Circuits
ExtendingtoS +z >0

YaXa yzxz Y1 xi

A h
d dz; i
q 000
Sg‘ s S
‘

%

@ Termsof Sares; < di_1 ® (X ®Yi)
@ Carry bits of S + z compiled from bits of z

cie[(sivV@)Acia]V(siA@)

where (2); depends on sign of z



Representing STCs as Circuits
ExtendingtoS +z >0

Ya Xa y‘z 2 Y1 X1

dqjé loo:ijé ‘

%

@ Termsof Sares; < di_1 ® (X ®Yi)
@ Carry bits of S + z compiled from bits of z

_ Ci_1 VS if @i =1
C'@’{ci_lAsi if @ =0

where (2); depends on sign of z



Representing STCs as Circuits

ExtendingtoS +z >0

@ X —Y +z > 0 expressed by cq but it can overflow
@ There are 2 cases:
© X —Y and z agree in sign

@ Adding z to X — Y will not change its sign
@ Hence dq indicates the sign of X —Y +z

@ X —Y and z have opposite sign

@ Adding z to X — Y cannot overflow
@ Hence ¢, indicates the sign of X —Y +z

@ We can represent the DTCs state by
@ dqAcqifzy <0
@ dgVeqifzy >0



Representing DTCs Propositionally

@ DTCs are disjunctions of STCs.

o Thewth sTCY — X < z can be represented
propositionally by a,:

ay © dgw ACqw ifz, <O

@ The DTC can then be expressed as a CNF clause:

aiva Vv...Va



CircuitTSAT: Representing DTPs as CNF

@ A DTP is expressed in CNF by difference logic:
o Carry bitdg of X — Y is expressed in CNF
o Carry bitcq of X —Y + 2z is expressed in CNF
) wth STCY — X < z is expressed in CNF in terms of
Cqw and dqw as ay.
@ Each DTC is represented in CNF

@ Solutions to the DTP are found using modern SAT
Solver. We tested several solvers:
@ JeruSAT [Nadel, 2002]

@ MiniSAT [Eén and Sérensson, 2003]
@ zChaff



Trade-offs with CircuitTSAT

@ Size of CNF (For a DTP with N temporal variables, M
clauses, and K disjuncts per clause)
@ O(gN + gKM) propositional variables
@ O(gKM) clauses
@ Choosing the size of the bit-space
@ Worst case: Chain of largest constant from each DTC
@ In a chain, these constants sum

- o ]

@ Smaller q gives faster performance, but is incomplete

@ Non-integer problems
@ Negative variables are avoided by translation via Xg
@ Real-valued variables approximated via scaling






Experimental Setup

@ We compare DTP solvers on random DTPs
@ Experimental parameters
@ N — number of temporal variables
@ M/N — ratio of clauses to temporal variables
o K — number of disjuncts per DTC
@ L — maximum magnitude of any constant in the DTP
@ Algorithms we compare
@ CircuitTSAT
@ TSAT++ [Armando et al, 2000, Armando et al, 2004]
@ Yices [Dutertre and de Moura, 2006]



Experiment 1

Comparing Performance for an Increasing Number of
Literals

@ We test for large numbers of temporal variables (N)
and many disjuncts per clause (K)

@ We plot log exec time vs. clause to variable ratio

(M/N)



Performance Comparison of CircuitTSAT

Increasing Number of Literals

Logarithm of Median Running Times for
K =3and N =50

CircuitTSAT ()
TSAT++ (X)
Yices (@)

Log of CPU Time
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Performance Comparison of CircuitTSAT
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Logarithm of Median Running Times for
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Performance Comparison of CircuitTSAT
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Future Work

Extending Circuit-based Approaches to DTPs

@ Preprocessing steps similar to TSAT++
@ Better strategies for allocating bits
@ Using gmax bits is a conservative allocation approach
@ May be able to allocate each X; with different size
@ May be able to employ over-approximation
of [Bryant et al, 2007]
@ Expanding to Hybrid CSPs
@ Extending CircuitTSAT to hybrid constraints
@ Applications to more problems in planning and
scheduling
@ Better SAT solvers
@ SAT solvers could be designed to better exploit the
structural information from a DTP
@ Similarly the MODOC solver was designed for
planning [Gelder and Okushi, 1999]



Conclusion

@ We demonstrated the capabilities of CircuitTSAT — a
circuit-based approach for solving DTP instances
@ We compared the circuit-based approach to other
DTP and SMT solvers
@ Yices faster for smaller values of K and N
@ Forlarge K and N, CircuitTSAT scales better and
significantly outperformed both Yices and TSAT++
@ CircuitTSAT exploits structural information of DTPs

@ It remains to be seen if circuit-based approaches can
be integrated with other approaches for better overall
performance



The End

Any question?




Experiment 2

Comparing Performance for Different Variants of TSAT

@ Here we compare the execution times of variants of
CircuitTSAT

@ We explore performance for large numbers of
temporal variables (N) and many disjuncts per clause
(K)

@ In the following plots, we plot log running time vs.
clause to variable ratio (M /N)

@ These tests demonstrate the effectiveness of different
SAT solvers for our approach and the advantages of
using a smaller bit-space size q.



Performance Comparison of CircuitTSAT

Variants of CircuitTSAT

Logarithm of Median Running Times for
N=150and K =2
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Performance Comparison of CircuitTSAT

Variants of CircuitTSAT

Logarithm of Median Running Times for
N =150and K =3
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Performance Comparison of CircuitTSAT

Variants of CircuitTSAT

Logarithm of Median Running Times for
N=150and K =5
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Extra Slides
DTP Notation

@ DTC D and a DTP P then expressed as follows:

M
D/\e = \/ S'Yi7>\i(zi) : P = /\ D/\z
(=1

(Nisviszi)ENe

where A, is a set containing triplets (\i, v, z;)



Extra Slides
Handling Overflows

@ X —Y +2z > 0is expressed by cq and dq but it can
overflow
@ There are 2 cases:
Qz<o:
@ dy = O implies that X —Y < 0 hence
dg = X-Y +4+z<0
@ dq = 1implies that X —Y > 0 so an overflow can’t
occur. Hence,cq & X =Y +z >0.
X=Y+z>0) & (dgAcg)

Q@z>o0:
@ dq = 1implies that X —Y > 0 hence
dg = X =Y +z>0.
@ dq = Oimplies that X — Y < 0 so an overflow can't
occur. Hence, ¢q < X —Y +z >0.
(X =Y +2z2>0) < (dg Vcq)

@ We can renresent the DTCs state bv d. A ¢c. or



Extra Slides
CNF for d; carry bits

@ The CNF for d; is
(di V di__]_ V X Vyi) A _(di \_/ ai_l Vyi) N
(divdi_1vX) A (divdiiVvxiVy) A
(di Vdi_1 \/)_/i) A (d, Vdi_ \/Xi)



Extra Slides
CNF for c; carry bits

@ The CNF for ¢; is

condition A

condition B

Ci VCi_1

CiVC_1Vdi_1VX VY
CiVC_1Vdi_1VX VY
Ci \/Ci_l\/ai_l\/)_(i V'Y
Ci \/Ci_l\/ai_l\/Xi VY
CiVC_1Vdi_1VX VY
CiVC_1Vdi_1VX VY
Ci \/Ci_l\/ai_l\/Xi V'Y
Ci \/Ci_l\/ai_l\/)_(i VY

Ci VCi_1

CiVCi_1Vdi_1 VX VY
CiVCi_1Vdi_1 VX VY
Ci VCi_1V ai_l V Xi VY
Ci VCi_1V ai_l V X VY
éi vV éi—l V di—l V )_(i V'Y
éi V éi—l V di—l VX V )_/i
CiVCi_1V ai_l V X VY,
CiVCi_1V ai_l V X VY




Extra Slides
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