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Introduction

We study fast solution to the Disjunctive Temporal
Problem (DTP)

We present CircuitTSAT that uses circuit-based
approaches similar to [Bryant et al, 2007] for DTPs.

We show that structure of the DTP is amenable to
circuit representations

We explore how our approach compares with other
approaches to other DTP solvers and discuss the
advantages and disadvantages of CircuitTSAT



Motivating Example
Scheduling

Consider set of N events {Xi}

The i-th event has duration di

Some events must occur before others:

Xi ≺ Xj

Single Resources: force events to be disjoint

Xi ≺ Xj ∨ Xj ≺ Xi



Motivating Example
Scheduling

Consider set of N events {Xi}

The i-th event has duration di

Some events must occur before others:

Xj − Xi ≥ di

A simple temporal constraint!

Single Resources: force events to be disjoint

Xi ≺ Xj ∨ Xj ≺ Xi



Motivating Example
Scheduling

Consider set of N events {Xi}

The i-th event has duration di

Some events must occur before others:

Xj − Xi ≥ di

A simple temporal constraint!

Single Resources: force events to be disjoint

Xj − Xi ≥ di ∨ Xi − Xj ≥ dj

A disjunction of simple temporal constraints



Simple Temporal Problems

An STP is characterized by
1 A set of events: X = {X0, X1 . . . XN}
2 A set of simple temporal constraints (STCs) of the

form
LB(i , j) ≤ Xj − Xi ≤ UB(i , j)

A solution is an assignment X satisfying all STCs

STPs can be efficiently solved using shortest path
algorithms [Dechter et al, 1991]



Disjunctive Temporal Problems

A DTP is characterized by
1 Events: X = {X0, X1 . . . XN}
2 Disjunctive temporal constraints (DTCs) of the form

S1(z1) ∨ S2(z2) ∨ . . . ∨ SK (zK )

where Sk (zk ) is an STC of the form

Xik − Xjk ≤ zk

for a pair of temporal variables

A solution is an assignment X satisfies every DTCs.

Solving DTPs are NP-hard in general.



Previous Work

TSAT++ [Armando et al, 2000, Armando et al, 2004]
Each STC is represented by a propositional variable
Satisfying the resulting SAT instance yields an STP
Consistency of the induced STP finds DTP solutions

Satisfiability Modulo Theories (SMT) Solvers
SMT solvers generalize SAT instances
Domain-specific functions replace Boolean variables
DTPs can be cast as SMT(DL)

UCLID [Bryant et al, 2002, Bryant et al, 2007]
UCLID SMT solver employs circuit-based expansions
Modern SMT solvers outperform circuit-based
approaches
We re-explore circuit-based approaches for DTPs



CircuitTSAT
A circuit-based approach to DTPs



Representing STCs as Circuits

Let X and Y be integral variables.
Further, suppose both are between 0 and Q.
Then both can represented by q = ⌈log2 Q⌉ bits:

X = 〈xq, xq−1 . . . x1〉

Y = 〈yq, yq−1 . . . y1〉

X − Y can then be represented as a circuit:



Representing STCs as Circuits
Sum and Carry Bits

The X − Y difference circuit produces sum S and
carry D bits:

S = 〈sq, sq−1 . . . s1〉

D = 〈dq, dq−1 . . . d1, d0 = 1〉

Since X ≥ 0 and Y ≥ 0, X − Y cannot overflow.
Further, dq indicates the sign of X − Y :

dq ⇔ X − Y ≥ 0



Representing STCs as Circuits
Auxiliary Variables for X − Y ≥ 0

Consider a Full Adder Circuit

We construct auxiliary variables di

di ⇔ [(xi ⊕ ȳi) ∧ di−1] ∨ (xi ∧ ȳi)

⇔ [(xi ∨ ȳi) ∧ di−1] ∨ (xi ∧ ȳi)



Representing STCs as Circuits
Extending to Y − X ≤ z

Constraints of X − Y ≥ 0 extend to Y − X ≤ z.

By regrouping, we convert it to 2 sums:

(X − Y ) + z ≥ 0



Representing STCs as Circuits
Extending to Y − X ≤ z

Constraints of X − Y ≥ 0 extend to Y − X ≤ z.

By regrouping, we convert it to 2 sums:

(X − Y )
︸ ︷︷ ︸

1st term = S

+z ≥ 0

The 1st is the difference between two variables: S.



Representing STCs as Circuits
Extending to Y − X ≤ z

Constraints of X − Y ≥ 0 extend to Y − X ≤ z.

By regrouping, we convert it to 2 sums:

S + z
︸ ︷︷ ︸

2nd term

≥ 0

The 2nd adds a constant to that difference.



Representing STCs as Circuits
Extending to Y − X ≤ z

Constraints of X − Y ≥ 0 extend to Y − X ≤ z.

By regrouping, we convert it to 2 sums:

S + z ≥ 0

We need a circuit for S + z ≥ 0



Representing STCs as Circuits
Extending to S + z ≥ 0

cq c2 c1

dq

Terms of S are si ⇔ di−1 ⊕ (xi ⊕ ȳi)

Carry bits of S + z compiled from bits of z

ci ⇔ [(si ∨ z©i) ∧ ci−1] ∨ (si ∧ z©i)

where z©i depends on sign of z



Representing STCs as Circuits
Extending to S + z ≥ 0

cq c2 c1

dq

Terms of S are si ⇔ di−1 ⊕ (xi ⊕ ȳi)

Carry bits of S + z compiled from bits of z

ci ⇔

{
ci−1 ∨ si if z©i = 1
ci−1 ∧ si if z©i = 0

where z©i depends on sign of z



Representing STCs as Circuits
Extending to S + z ≥ 0

X − Y + z ≥ 0 expressed by cq but it can overflow
There are 2 cases:

1 X − Y and z agree in sign
Adding z to X − Y will not change its sign
Hence dq indicates the sign of X − Y + z

2 X − Y and z have opposite sign
Adding z to X − Y cannot overflow
Hence cq indicates the sign of X − Y + z

We can represent the DTCs state by
dq ∧ cq if zw ≤ 0
dq ∨ cq if zw > 0



Representing DTCs Propositionally

DTCs are disjunctions of STCs.

The w th STC Y − X ≤ z can be represented
propositionally by aw :

aw ⇔ dq,w ∧ cq,w if zw ≤ 0

aw ⇔ dq,w ∨ cq,w if zw > 0

The DTC can then be expressed as a CNF clause:

a1 ∨ a2 ∨ . . . ∨ ak



CircuitTSAT: Representing DTPs as CNF

A DTP is expressed in CNF by difference logic:
Carry bit dq of X − Y is expressed in CNF
Carry bit cq of X − Y + z is expressed in CNF

w th STC Y − X ≤ z is expressed in CNF in terms of
cq,w and dq,w as aw .
Each DTC is represented in CNF

Solutions to the DTP are found using modern SAT
Solver. We tested several solvers:

JeruSAT [Nadel, 2002]
MiniSAT [Eén and Sörensson, 2003]
zChaff



Trade-offs with CircuitTSAT

Size of CNF (For a DTP with N temporal variables, M
clauses, and K disjuncts per clause)

O(qN + qKM) propositional variables
O(qKM) clauses

Choosing the size of the bit-space
Worst case: Chain of largest constant from each DTC
In a chain, these constants sum

qmax =

⌈

log2

M∑

i=1

max
zw∈DTCi

|zw |

⌉

Smaller q gives faster performance, but is incomplete

Non-integer problems
Negative variables are avoided by translation via X0

Real-valued variables approximated via scaling



Experiments



Experimental Setup

We compare DTP solvers on random DTPs
Experimental parameters

N — number of temporal variables
M/N — ratio of clauses to temporal variables
K — number of disjuncts per DTC
L — maximum magnitude of any constant in the DTP

Algorithms we compare
CircuitTSAT
TSAT++ [Armando et al, 2000, Armando et al, 2004]
Yices [Dutertre and de Moura, 2006]



Experiment 1
Comparing Performance for an Increasing Number of

Literals

We test for large numbers of temporal variables (N)
and many disjuncts per clause (K )

We plot log exec time vs. clause to variable ratio
(M/N)



Performance Comparison of CircuitTSAT
Increasing Number of Literals

Logarithm of Median Running Times for
K = 3 and N = 50
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Performance Comparison of CircuitTSAT
Increasing Number of Literals

Logarithm of Median Running Times for
K = 3 and N = 200
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Performance Comparison of CircuitTSAT
Increasing Number of Literals

Logarithm of Median Running Times for
K = 5 and N = 50
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Performance Comparison of CircuitTSAT
Increasing Number of Literals
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Performance Comparison of CircuitTSAT
Increasing Number of Literals

Logarithm of Median Running Times for
K = 7 and N = 50
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Performance Comparison of CircuitTSAT
Increasing Number of Literals

Logarithm of Median Running Times for
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Performance Comparison of CircuitTSAT
Increasing Number of Literals

Logarithm of Median Running Times for
K = 7 and N = 200
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Future Work
Extending Circuit-based Approaches to DTPs

Preprocessing steps similar to TSAT++
Better strategies for allocating bits

Using qmax bits is a conservative allocation approach
May be able to allocate each Xi with different size
May be able to employ over-approximation
of [Bryant et al, 2007]

Expanding to Hybrid CSPs
Extending CircuitTSAT to hybrid constraints
Applications to more problems in planning and
scheduling

Better SAT solvers
SAT solvers could be designed to better exploit the
structural information from a DTP
Similarly the MODOC solver was designed for
planning [Gelder and Okushi, 1999]



Conclusion

We demonstrated the capabilities of CircuitTSAT — a
circuit-based approach for solving DTP instances
We compared the circuit-based approach to other
DTP and SMT solvers

Yices faster for smaller values of K and N
For large K and N, CircuitTSAT scales better and
significantly outperformed both Yices and TSAT++
CircuitTSAT exploits structural information of DTPs

It remains to be seen if circuit-based approaches can
be integrated with other approaches for better overall
performance



The End
Any question?



Experiment 2
Comparing Performance for Different Variants of TSAT

Here we compare the execution times of variants of
CircuitTSAT

We explore performance for large numbers of
temporal variables (N) and many disjuncts per clause
(K )

In the following plots, we plot log running time vs.
clause to variable ratio (M/N)

These tests demonstrate the effectiveness of different
SAT solvers for our approach and the advantages of
using a smaller bit-space size q.



Performance Comparison of CircuitTSAT
Variants of CircuitTSAT

Logarithm of Median Running Times for
N = 150 and K = 2
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Performance Comparison of CircuitTSAT
Variants of CircuitTSAT

Logarithm of Median Running Times for
N = 150 and K = 3
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Performance Comparison of CircuitTSAT
Variants of CircuitTSAT

Logarithm of Median Running Times for
N = 150 and K = 5
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Extra Slides
DTP Notation

DTC D and a DTP P then expressed as follows:

DΛℓ
=

∨

(λi ,γi ,zi)∈Λℓ

Sγi ,λi (zi) ; P =
M∧

ℓ=1

DΛℓ

where Λℓ is a set containing triplets (λi , γi , zi)



Extra Slides
Handling Overflows

X − Y + z ≥ 0 is expressed by cq and dq but it can
overflow
There are 2 cases:

1 z ≤ 0:
dq = 0 implies that X − Y < 0 hence
d̄q ⇒ X − Y + z < 0
dq = 1 implies that X − Y ≥ 0 so an overflow can’t
occur. Hence, cq ⇔ X − Y + z ≥ 0.

(X − Y + z ≥ 0) ⇔ (dq ∧ cq)

2 z > 0:
dq = 1 implies that X − Y ≥ 0 hence
dq ⇒ X − Y + z ≥ 0.
dq = 0 implies that X − Y < 0 so an overflow can’t
occur. Hence, cq ⇔ X − Y + z ≥ 0.

(X − Y + z ≥ 0) ⇔ (dq ∨ cq)

We can represent the DTCs state by dq ∧ cq or
dq ∨ cq according to the sign of z.



Extra Slides
CNF for di carry bits

The CNF for di is

(di ∨ di−1 ∨ x̄i ∨ yi) ∧ (di ∨ d̄i−1 ∨ yi) ∧
(di ∨ d̄i−1 ∨ x̄i) ∧ (d̄i ∨ d̄i−1 ∨ xi ∨ ȳi) ∧
(d̄i ∨ di−1 ∨ ȳi) ∧ (d̄i ∨ di−1 ∨ xi)



Extra Slides
CNF for ci carry bits

The CNF for ci is

condition A condition B

ci ∨ c̄i−1

ci ∨ ci−1 ∨ di−1 ∨ xi ∨ yi

ci ∨ ci−1 ∨ di−1 ∨ x̄i ∨ ȳi

ci ∨ ci−1 ∨ d̄i−1 ∨ x̄i ∨ yi

ci ∨ ci−1 ∨ d̄i−1 ∨ xi ∨ ȳi

c̄i ∨ ci−1 ∨ di−1 ∨ x̄i ∨ yi

c̄i ∨ ci−1 ∨ di−1 ∨ xi ∨ ȳi

c̄i ∨ ci−1 ∨ d̄i−1 ∨ xi ∨ yi

c̄i ∨ ci−1 ∨ d̄i−1 ∨ x̄i ∨ ȳi

c̄i ∨ ci−1

ci ∨ c̄i−1 ∨ di−1 ∨ xi ∨ yi

ci ∨ c̄i−1 ∨ di−1 ∨ x̄i ∨ ȳi

ci ∨ c̄i−1 ∨ d̄i−1 ∨ x̄i ∨ yi

ci ∨ c̄i−1 ∨ d̄i−1 ∨ xi ∨ ȳi

c̄i ∨ c̄i−1 ∨ di−1 ∨ x̄i ∨ yi

c̄i ∨ c̄i−1 ∨ di−1 ∨ xi ∨ ȳi

c̄i ∨ c̄i−1 ∨ d̄i−1 ∨ xi ∨ yi

c̄i ∨ c̄i−1 ∨ d̄i−1 ∨ x̄i ∨ ȳi
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