
CircuitTSAT: A Solver for Large Instances of the Disjunctive Temporal Problem

Blaine Nelson
Computer Science Division

University of California, Berkeley
nelsonb@eecs.berkeley.edu

T. K. Satish Kumar ∗
Institute for Human and Machine Cognition

Pensacola, Florida, U.S.A.
skumar@ihmc.us

Abstract

In this paper, we report on a new solver for large instances of
theDisjunctive Temporal Problem(DTP). Our solver is based
primarily on the idea of employing “compact” circuit-based
representations of disjunctive temporal constraints (akin to
ripple-carry addersused in computer arithmetic operations).
These circuit-based representations are in turn converted to
CNF clauses of a SAT instance, and a powerful SAT solver
is subsequently employed to efficiently solve the resulting
SAT instance. We refer to this efficient DTP solver as “Cir-
cuitTSAT.” A thorough empirical evaluation of CircuitTSAT
shows that it significantly outperforms TSAT++ and Yices on
a wide range of DTP instances. We also comment on the gen-
erality of our approach and its potential usefulness in dealing
with more expressive constraints.

Introduction
Expressive and efficient temporal reasoning is central to
many areas of Artificial Intelligence. Many tasks in planning
and scheduling, for example, involve reasoning about tem-
poral constraints between actions and propositions in partial
plans. These may include tasks such asthreat resolutionbe-
tween actions in partial order planning, analyzingresource
consumption envelopesto guide the search for a good plan
(Kumar 2003), etc. Among the important formalisms used
for reasoning with metric time areSimple Temporal Prob-
lems(STPs) (Dechter et al 1991) andDisjunctive Temporal
Problems(DTPs) (Stergiou and Koubarakis 1998).

An STP is characterized by a graphG = 〈X , E〉, where
X = {X0, X1 . . . XN} is a set of events (X0 is the “begin-
ning of the world” node set to0 by convention), ande =
〈Xi, Xj〉 ∈ E , annotated with the bounds[LB(e), UB(e)],
is a simple temporal constraint(STC) betweenXi andXj

indicating thatXj must be scheduled betweenLB(e) and
UB(e) time units afterXi is scheduled (LB(e) ≤ UB(e)).
STPs can be efficiently solved (in polynomial time) using
shortest path computations (Dechter et al 1991).

DTPs are significantly more expressive than STPs, and
allow for disjunctive temporal constraints. The general rep-
resentational form of a DTP is as follows. We are given a set

∗Several parts of this research were done by the author while at
the University of California, Berkeley.
Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of eventsX = {X0, X1 . . . XN} and a set of constraintsC.
A disjunctive temporal constraint(DTC) ci ∈ C is a disjunc-
tion of the forms(i,1)∨s(i,2) . . . s(i,Ti). Here,s(i,j) (1 ≤ j ≤
Ti) is an STC of the formL(i,j) ≤ Xb(i,j)

−Xa(i,j)
≤ U(i,j)

for a(i,j), b(i,j) ∈ {0, 1 . . .N}. Although DTPs can cap-
ture many important combinatorial tasks in planning and
scheduling, they are NP-hard in general. The principal ap-
proach taken to solve DTPs has been to convert the original
problem to one of selecting a disjunct from each constraint
such that the set of selected disjuncts induces a consistent
STP. (Checking the consistency of, and finding a solution to
an STP can be performed in polynomial time.) The hardness
of solving a DTP is reflected in the fact that there are an ex-
ponentially large number of disjunct combinations possible.

The above “disjunct selection problem” can also be cast as
aConstraint Satisfaction Problem(CSP) or a SAT problem,
and subsequently solved using standard search techniques
applicable to them. In the first approach, a meta-level vari-
able is associated with each clause, and the domain of this
variable is just the set of disjuncts in that clause. We then
seek an assignment to the meta-level variables that induces
a consistent STP.1 The EPILITIS system (Tsamardinos and
Pollack 2003), for example, employs standard CSP search
techniques likeconflict-directed backjumpingand nogood
recording for pruning the search space. In the SAT-based
approach, a DTP is abstracted into a propositional formula
obtained by substituting each distinct binary difference con-
straint with a new propositional atom. Only those assign-
ments that satisfy the SAT instance are first generated, and
later checked for the consistency of the induced STP. The
TSAT++ solver (Armando et al 2004), for example, suc-
cessfully incorporates many techniques akin to those used
in modern SAT solvers (Moskewicz et al 2001). It employs
preprocessingstrategies,look-ahead/look-backtechniques
andbranching rulesthat enable it to significantly outperform
its previous competitors on a wide variety of DTP instances.

Although TSAT++ employs a wide range of techniques
akin to the ones used in many state-of-the-art SAT solvers, it
does not provide a framework for directly employing a SAT
solver. In fact, both CSP-based and SAT-based approaches
repeatedly use the Bellman-Ford algorithm for checking the

1A final solution is obtained by solving the consistent STP using
shortest path computations.

232

Proceedings of the Eighteenth International Conference on Automated Planning and Scheduling (ICAPS 2008)

consistency of the induced STPs (under different proposed
meta-level assignments). In this paper, we report on a new
solver for large instances of the DTP. Our solver — referred
to as “CircuitTSAT” — is based primarily on the idea of
employing “compact” circuit-based representations of DTCs
(akin toripple-carry addersused in computer arithmetic op-
erations). These circuit-based representations are in turn
converted to CNF clauses of a SAT instance, and a power-
ful SAT solver is employed to efficiently solve the resulting
SAT instance — thereby providing a framework for directly
employing a state-of-the-art SAT solver. A thorough em-
pirical evaluation of CircuitTSAT shows that it significantly
outperforms TSAT++ on a wide range of DTP instances.

It is also imperative for us to compare the performance
of CircuitTSAT with that of Yices (a powerful SMT solver).
An SMT (Satisfiability Modulo Theories) problem instance
is a generalization of a Boolean SAT instance in which the
Boolean variables are replaced by binary-valued functions
of suitable domain-specific variables (referred to aspredi-
cates). (The predicates in a DTP instance are simple differ-
ence inequalities.) Yices (Dutertre and de Moura 2006) is
a state-of-the-art SMT solver2 that decides the satisfiability
of formulas containing uninterpreted function symbols with
equality, linear real/integer arithmetic, recursive datatypes,
etc. Because of its generality, Yices can also be used to solve
DTP instances. However, as we will show in this paper, Cir-
cuitTSAT significantly outperforms Yices on a wide range
of DTP instances. This suggests that although Yices is a
powerful state-of-the-art solver suitable for general SMT in-
stances, it does not match the performance of CircuitTSAT
on the more structured DTP instances.

It is worth noting that early attempts for solving SMT in-
stances were in fact based on the idea of translating them
to Boolean SAT instances and solving them using a power-
ful SAT solver; e.g., (Bryant et al 2002). However, this ap-
proach was superseded by solvers (like Yices) that tightly in-
tegrated the Boolean reasoning with theory-specific solvers.
Nonetheless, while theory-specific solvers are more produc-
tive in the general context of solving SMTs, our work sug-
gests that this is not necessarily the case for specific kinds
of combinatorial problems like DTPs. In fact, as alluded to
before, it is highly inefficient for us to repeatedly employ
the Bellman-Ford algorithm (in a search tree of exponential
size) for solving large DTP instances. Further, the empirical
success of CircuitTSAT (over TSAT++ and Yices) is also
indicative of the potential value in using similar techniques
for solving other specific (and important) kinds of combina-
torial problems. In this regard, we briefly comment on the
extent of our approach and its potential usefulness in dealing
with more expressive kinds of constraints.

Background and Notation
We now introduce some definitions and notations to be used
throughout the rest of the paper. We also briefly comment on
some complexity results and/or algorithms associated with

2Yices won in all of the eleven divisions in the SMT-COMP’06
competition, and won in seven out of the twelve divisions in the
SMT-COMP’07 competition.

solving STPs and DTPs. We refer to a difference inequality
of the formXj−Xi ≤ z as an STC, and denote it bySi,j(z).
A DTC D and a DTPP can then be expressed as follows:

DΛℓ
=

∨

(λi,γi,zi)∈Λℓ

Sγi,λi
(zi) ; P =

M
∧

ℓ=1

DΛℓ
. (1)

Here,Λℓ is a set containing triplets of the form(λi, γi, zi);
theλi’s andγi’s are indices, and thezi’s are constants. The
number of triplets inΛℓ — i.e., |Λℓ| — is denoted byKℓ,
andmaxℓ Kℓ is denoted byK. We note that this variant of
DTPs is in fact representationally as powerful as the general
form of DTPs, and is also the same as that used by several
other researchers (Armando et al 2000).

It is also well known that a conjunction of STCs can be
efficiently solved (in polynomial time) using shortest path
computations on a directed graph. Central to this algorithm
is the notion of adistance graphD(G) associated with a
given STPG = 〈X , E〉. An edge〈Xi, Xj〉 in the distance
graph is annotated with a real numberz, and encodes the
constraintXj − Xi ≤ z. It can be shown that a consis-
tent schedule exists forX0, X1 . . . XN in G if and only if
the distance graphD(G) does not contain any negative cost
cycles (Dechter et al 1991). On the other hand, DTPs are
NP-hard in general — although rich tractable classes have
been identified in (Kumar 2005) and (Kumar 2006).

Circuit-Based Representation of DTCs
Given a DTP, there are many ways to cast it as a SAT in-
stance. A naı̈ve way to do this is to first discretize the domain
of each real-valued variable, and then introduce a Boolean
variable for each landmark. This method, however, requires
the absolute value of any variable to be bounded by some
positive number (Q). It also requires an appropriate scale
of discretization (s). If there areN variables in the DTP,
the resulting SAT instance would contain an unwieldyNQ

s
number of Boolean variables. Further, each constraint by it-
self would have a complicated representation — making this
approach highly undesirable.

A second method to represent a DTP as a SAT or a CSP
instance is akin to those used in popular systems like EPILI-
TIS or TSAT++. Here, the DTP is viewed as a “disjunct
selection problem,” and meta-level variables are used to rep-
resent commitments to different disjuncts in each clause.
Although the number of meta-level variables and the sizes
of their respective domains are manageable, the constraints
are no longer explicit. Instead, the constraints are implic-
itly characterized by the presence/absence of negative cost
cycles in the induced distance graphs. Further, it is expen-
sive to explicitly enumerate all constraints before search is
carried out as there may be an exponential number of them.

A third approach that we propose is to leverage the struc-
ture of the DTCs — namely, the fact that they have “com-
pact” circuit-based representations. In particular, we repre-
sent the value of any temporal variable in a binary format,
and use Boolean variables corresponding to each bit posi-
tion in this representation. IfQ is the largest value that any
temporal variable can take, the total number of Boolean vari-
ables required would only beN⌈log2 Q⌉. Further, we show

233

that each DTC can be represented “compactly” using a cir-
cuit that in turn can be encoded as a SAT instance with the
use of a small number of auxiliary variables. This leads us
to a representation scheme where both the number of vari-
ables and the number of constraints are manageable. The
constraints can also be shown to have simple representations
— making our approach not only scalable to large DTP in-
stances, but also amenable to an off-the-shelf SAT solver.

Formulating a DTP directly as a SAT instance has at least
the following two clear advantages. First, modern SAT solv-
ing techniques can be directly employed for solving DTPs.
Any new techniques developed for bettering SAT solvers
would bear immediate and direct implications on the effi-
ciency of solving DTP instances — hence obviating the need
to redesign our DTP solver and/or implement the analogues
of such new techniques especially for DTPs. Second, by de-
creasing the number of bits used to represent the possible
values of a temporal variable, we can trade-off various as-
pects of the problem’s complexity; for example, we can sim-
plify the search space (reduce the complexity of search) by
compromising on the precision of the numerical constants
used in the given DTP instance.3

In this section, we will primarily address DTPs with non-
negative integral temporal variables. Our framework can be
easily extended to include negative integers by a mechanism
that simply translates the upper and lower bounds on the
variables. It can also be easily extended to include floating-
point numbers by using a simple scaling mechanism. In the
next subsection, we will present techniques for compactly
representing STCs using circuits. (We will illustrate many
of these techniques for inequalities of the formY − X ≤ 0
before generalizing them to STCs of the formY − X ≤ z.)
Later, we will show how DTPs can also be represented com-
pactly using circuit-based SAT encodings.

Representing STCs using Circuits:
Let us consider two non-negative integral variablesX and
Y whose values are represented in a binary format usingq
bits (logical variables) each; i.e.,X = 〈xq, xq−1 . . . x1〉 and
Y = 〈yq, yq−1 . . . y1〉. As depicted in Figure 1(a), the binary
representation ofX −Y in 2’s complement notation4 can be
found by simply negating the bits ofY and using anadder
circuit with an initial carry-bitd0 = 1.5 The composite cir-
cuit calculates the difference betweenX andY “logically;”
and more importantly, it computes the sign of the difference
encoded in its final carry-bitdq. In particular,dq is a propo-
sitional variable equivalent toX − Y ≥ 0.

In order to calculate the required carry-bit, we need to
study the circuitry of the adder. Figure 1(c) shows a sim-
ple cascading chain offull adderscapable of computing the

3We note again that although the idea of using circuit-based
SAT encodings of constraints may not outperform powerful solvers
like Yices for general SMT instances, it can still exploit additional
structure in more specific combinatorial problems like DTPs.

4This is a common representation for integers in which the most
significant bit represents the sign. For negative integers, inverting
the bits and adding1 yields its absolute value. It can be shown that
many arithmetic circuits are simplified by using this convention.

5For addition, we used0 = 0, and we do not negateY .

(a) X − Y (b) A 1-bit Difference Circuit

(c) A q-bit Ripple-Carry Difference Circuit forX − Y

Figure 1:Shows the circuits required for computingX − Y . Fig-
ure 1(a) shows that an adder circuit suffices for this task. Figure
1(b) shows how bitwise differences are computed using a full adder
and the 1’s complement operation (negation). Chaining these units
together produces the difference circuit in Figure 1(c) that com-
putes the sum and carry bits,si anddi. The final carry-bitdq indi-
cates the sign of the difference:dq ⇔ (X −Y ≥ 0). These circuit
designs can be found in (Heuring et al 1997).

difference and the final carry-bit of twoq-bit numbers (Heur-
ing et al 1997). This configuration is commonly known as
a ripple-carry adder, and the underlying units — as shown
in Figure 1(b) — are referred to as 1-bitfull adders. We
note that the bits ofY are negated explicitly in this differ-
ence circuit since the only operation of interest is the differ-
ence operation. We also note that while more complicated
circuits could be used to directly allow for negative inte-
gers and/or floating-point difference computations, doing so
would complicate the resulting inequality tests as well. By
considering only non-negative integers, we are assured that
no overflow is possible in computing the differenceX − Y .
Thus, the inequality test only concerns the final carry-bitdq

(instead of a more complicated test). Further, as mentioned
before, translation/scaling techniques can also be used to
deal with DTPs on negative/floating-point numbers.

While alternative adder circuits also exist (e.g., thecarry
lookahead adder), the ripple-carry adder exhibits a simple
recursive nature. To better understand difference compu-
tations using ripple-carry adders, we first examine a single
adder unit. As Figure 1(b) shows, the 1-bit full adder pro-
duces a sum-bitsi and a carry-bitdi expressed logically as:

si = di−1 ⊕ (xi ⊕ ȳi) (2)

di = [(xi ⊕ ȳi) ∧ di−1] ∨ (xi ∧ ȳi)

= [(xi ∨ ȳi) ∧ di−1] ∨ (xi ∧ ȳi) . (3)

As previously noted, only the final carry-bit is relevant
to determine whetherX − Y ≥ 0. This therefore leads us
to attempt expanding Eq. 3 explicitly in terms of the input
bits 〈xq , xq−1 . . . x1〉 and〈yq, yq−1 . . . y1〉. In fact, as Eq. 3
shows, the recursion fordi is a first-order recursion that can

234

be unwrapped as follows:

dq =

q
∨

j=1

(xj ∧ ȳj) ∧

q
∧

i=j+1

(xi ∨ ȳi)

 .

However, further simplification of this expression is some-
what prohibitive — thereby warranting a different approach.

Converting STCs to CNF Efficiently:
We will now show how to propositionally represent an STC
using auxiliary variables;6 and we will refer to this method
as theauxiliary-variable approach. We first recall thatdq ⇔
(X − Y ≥ 0) and that Eq. 3 yields constraints of the form:

di ⇔ [(xi ∨ ȳi) ∧ di−1] ∨ (xi ∧ ȳi) . (4)

In turn, these constraints can be easily translated into a set
of clauses; and recursively consideringdi−1, it is easy to see
that every difference inequality requires the addition ofO(q)
auxiliary variables andO(q) clauses into the SAT formula-
tion. (The resulting SAT problems are however still quite
manageable for modern SAT solvers.)

Using the auxiliary-variable logic formalism for express-
ing X − Y ≥ 0, we can build the logically equivalent form
of an STC “Y − X ≤ z” for non-negative integer variables
X andY , and a (signed) integer constantz. This is done by
first rewriting the STC as(X −Y) + z ≥ 0, and then evalu-
ating it in two phases: (1) expressingX−Y propositionally,
and (2) adding the constantz to the result. The sum-bits and
carry-bits of(X − Y) are denoted bysi anddi respectively,
and the corresponding bits of(X − Y) + z are denoted by
ri andci respectively. While the propositional formulas for
si anddi are expressed in Eqs. 2 and 3 withd0 = 1, the
formulas forri andci are more complex since one of the ar-
guments is actually the result of the differenceX − Y . (We
must also allow for the constantz to beanysigned integer.)
The carry-bits are given by:7

ci =

{

((si ∨ z̄i) ∧ ci−1) ∨ (si ∧ z̄i) if z ≤ 0
((si ∨ zi) ∧ ci−1) ∨ (si ∧ zi) if z > 0

=

{

ci−1 ∨ si if condA

ci−1 ∧ si if condB
. (5)

Here we havec0 = 1 for z ≤ 0 andc0 = 0 for z > 0, and
the conditions condA and condB are given by:

condA = [(z ≤ 0) ∧ (zi = 0)] ∨ [(z > 0) ∧ (zi = 1)] (6)

condB = [(z ≤ 0) ∧ (zi = 1)] ∨ [(z > 0) ∧ (zi = 0)] (7)

The simplified form in Eq. 5 is possible because thezi bits
are constants for any given STC. This enables us to compile
a set of customized clauses for each STC based on the corre-
sponding value ofz. (We can build the CNF representation
for each STC by iteratively testing for the conditions condA

and condB, and adding the appropriate clauses.)

6These auxiliary variables correspond to the outputs of interme-
diate gates in the underlying circuitry.

7Computing the sum-bitsri is unnecessary since we are only
concerned with the sign of the expression.

Converting Constraints to CNF: Looking at the truth-
tables for the logical functions described in Eqs. 4 and 5, we
can now build the CNF representations for the constraints
corresponding to the auxiliary variablesdi andci. The CNF
equivalent for each “di constraint” is as follows:

(di ∨ di−1 ∨ x̄i ∨ yi) ∧ (di ∨ d̄i−1 ∨ yi) ∧
(di ∨ d̄i−1 ∨ x̄i) ∧ (d̄i ∨ d̄i−1 ∨ xi ∨ ȳi) ∧
(d̄i ∨ di−1 ∨ ȳi) ∧ (d̄i ∨ di−1 ∨ xi)

The CNF equivalent for each “ci constraint” depends on the
conditions in Eqs. 6 and 7 and is as follows:

condition A condition B

ci ∨ c̄i−1

ci ∨ ci−1 ∨ di−1 ∨ xi ∨ yi

ci ∨ ci−1 ∨ di−1 ∨ x̄i ∨ ȳi

ci ∨ ci−1 ∨ d̄i−1 ∨ x̄i ∨ yi

ci ∨ ci−1 ∨ d̄i−1 ∨ xi ∨ ȳi

c̄i ∨ ci−1 ∨ di−1 ∨ x̄i ∨ yi

c̄i ∨ ci−1 ∨ di−1 ∨ xi ∨ ȳi

c̄i ∨ ci−1 ∨ d̄i−1 ∨ xi ∨ yi

c̄i ∨ ci−1 ∨ d̄i−1 ∨ x̄i ∨ ȳi

c̄i ∨ ci−1

ci ∨ c̄i−1 ∨ di−1 ∨ xi ∨ yi

ci ∨ c̄i−1 ∨ di−1 ∨ x̄i ∨ ȳi

ci ∨ c̄i−1 ∨ d̄i−1 ∨ x̄i ∨ yi

ci ∨ c̄i−1 ∨ d̄i−1 ∨ xi ∨ ȳi

c̄i ∨ c̄i−1 ∨ di−1 ∨ x̄i ∨ yi

c̄i ∨ c̄i−1 ∨ di−1 ∨ xi ∨ ȳi

c̄i ∨ c̄i−1 ∨ d̄i−1 ∨ xi ∨ yi

c̄i ∨ c̄i−1 ∨ d̄i−1 ∨ x̄i ∨ ȳi

The CNFs built for thedi and ci constraints can now be
used in constructing the SAT encodings for STCs of the form
X−Y +z ≥ 0. However, we note that the logical expression
equivalent to an STC of the formX − Y + z ≥ 0 is more
complex than that forX − Y ≥ 0. This is because the
combined operation(X − Y) + z can potentially overflow.
Nonetheless,(X − Y) + z ≥ 0 can be logically expressed
in terms of the carry-bitsdq andcq. Whenz ≤ 0, dq = 0
implies thatX − Y < 0; and regardless ofcq, we have that
(X − Y) + z < 0. Whenz ≤ 0, dq = 1 implies that
X − Y ≥ 0; and adding the non-positivez therefore cannot
cause an overflow. Thus, in this case,cq identifies the sign
of X − Y + z. Put together, the required test (for the case
whenz ≤ 0) is given by:

(X − Y + z ≥ 0) ⇔ (dq ∧ cq) . (8)

Similarly, whenz > 0, dq = 1 implies thatX − Y ≥ 0;
and thusX − Y + z ≥ 0. Whenz > 0, dq = 0 implies
that X − Y < 0; and addingz therefore cannot cause an
overflow. Put together, the required test (for the case when
z > 0) is given by:

(X − Y + z ≥ 0) ⇔ (dq ∨ cq) . (9)

We have now completely described the mechanism for
transforming an STC into CNF. Eqs. 8 and 9 give logical
conditions for testing whether an STC is satisfied, and Eqs. 4
and 5 describe the constraints on the auxiliary variables.

Transforming the DTCs:
Since the STCs are themselves disjuncts in the DTCs, our
last task is to replace these disjuncts with their propositional
forms provided in Eqs. 8 and 9. In some cases, this substi-
tution directly yields CNF clauses, but in other cases, it may
yield complex logical expressions (due to the conjunction in

235

Eq. 8). Rather than expanding them into CNF directly, we
introduce another set of auxiliary variablesaw. These vari-
ables occur whenz ≤ 0, and are defined as:

aw ⇔ dq,w ∧ cq,w . (10)

Here,aw represents thewth STC in the DTC, anddq,w and
cq,w are theqth carry-bits of thewth STC. In turn, these
constraints can be easily translated into CNF clauses. Simi-
lar auxiliary variables can also be used whenz > 0, but are
not necessary since the STC from Eq. 9 is already character-
ized by a disjunction. Finally, we can express the DTC as a
disjunction of literals:a1 ∨a2 . . . ak (wherek is the number
of disjuncts in the DTC).

Choosing the Bit-Space for CircuitTSAT:
We note that in CircuitTSAT, a DTP with parametersN , K
andM is converted into a SAT instance that hasO(qN +
qKM) variables andO(qKM) clauses (whereq is the num-
ber of bits representing each temporal variable’s value). One
of the issues with CircuitTSAT is that it is non-trivial to ob-
tain a tight bound onq. If we chooseq to be too small, there
may exist solutions to a given DTP that cannot be repre-
sented within the bit-space. In such a case, CircuitTSAT can
report the absence of a solution even when one actually ex-
ists; we refer to this as amiscue. However, small values ofq
reduce the size of the CNF and may result in faster execution
times of the SAT solver.

A loose upper bound onq for non-negative integer DTPs
is given by:

qmax =

⌈

log2

M
∑

i=1

max
(λj ,γj ,zj)∈Λi

|zj |

⌉

. (11)

This bound is based on the fact that, in the worst case, the
largest constant (in absolute value) from each DTC would
be introduced into the distance graph. We also note that al-
thoughqmax is a sound upper bound on the number of bits
required, many other heuristically chosen values ofq may
perform better in practice.

Experimental Results and Comparisons
In this section, we provide an empirical evaluation of Cir-
cuitTSAT, TSAT++ and Yices on a wide range of DTP in-
stances. These DTP instances were generated randomly us-
ing the “random DTP generation model” described in (Ar-
mando et al 2000; 2004). The parameters used in this pro-
cess areK: the number of disjuncts per DTC,N : the num-
ber of temporal variables in the DTP,M : the number of
DTCs in the DTP, andL: the maximum absolute value of
any constant in the DTP. An exact description of the “ran-
dom DTP generation model” is provided later in this section.

To compare the efficiency and scalability of the differ-
ent solvers, we tested them on larger values ofK and N
than those used in (Armando et al 2000; 2004). In par-
ticular, we usedK ∈ {3, 5, 7}, N ∈ {50, 100, 150, 200},
M/N ∈ {2, 4, 6, 8, 10, 12, 14}, andL = 100. We generated
50 DTP instances for each combination of values for the
above parameters, and we ran CircuitTSAT, TSAT++ and

Yices on these instances. All trials were given at most10
minutes to complete. All experiments were run on a single
machine with a 2.8 GHz Pentium 4 processor and 2 GB of
RAM. All solvers were timed externally to ensure fairness.

Other solver-specific decisions were made to ensure fair-
ness. For TSAT++, we enabledearly pruning, IS(2) pre-
processing, triggering optimizationandshortest reason de-
tection.8 For Yices, we used two different variants. In the
first version, the temporal variables were specified to be real-
valued; and in the second version, they were specified as in-
tegers. However we did not find any significant difference in
the performances of these two variants; and for the purposes
of this paper, we report only on the integer-variant of Yices.
Finally, for CircuitTSAT, we used the JeruSAT SAT solver
(Nadel 2002), and we usedq = qmax.

Later in this section, we also report on the performances
of other variants of CircuitTSAT. In particular, we computed
qmin = ⌈log2 L⌉, and designed several “bit-variants” of Cir-
cuitTSAT that progressively employqmin, qmin+1, qmin+2
. . .qmax bits. The corresponding CircuitTSAT solvers are
referred to as CTSATmin, CTSAT+1, CTSAT+2 . . . CTSATmax.
However, unless otherwise stated, CircuitTSAT refers to the
CTSATmax variant of our algorithm.

Generating Random Instances of the DTP: Random in-
stances of the DTP were generated according to the model
introduced in (Stergiou and Koubarakis 1998; 2000). How-
ever, as in (Armando et al 2000; 2004), we usedM/N —
instead ofM — as a parameter in the generation process;
and as with previous studies, our experiments only gener-
ated integer constants for the STCs. The DTCs were gener-
ated according to the following process:

for ℓ = 1 to K do
Choose distincti andj uniformly from theN variables.
Draw an integerz uniformly from the interval[−L, L].
Theℓ-th disjunct in this DTC is set to be “Xj − Xi ≤ z.”

end for
if any two of the disjuncts are identicalthen

Discard this DTC.
end if

This process is repeated untilM DTCs have been generated.

Results and Analysis:
Figure 2 shows graphical comparisons of the performances
of CircuitTSAT, TSAT++ and Yices. The three graphs cor-
respond toK = 3, K = 5 andK = 7 respectively. In
Figure 2(a) (whereK = 3), we observe that Yices exhibits
the best overall performance for all values ofN . However,
the margin between the performances of CircuitTSAT and
Yices decreases with increasingN . Further, in Figure 2(b)
(whereK = 5), we observe that while CircuitTSAT scales
very well with increasingN , both TSAT++ and Yices fail to
match its superior performance. In fact, whenN ≥ 100,
CircuitTSAT significantly outperforms both TSAT++ and

8As suggested by the authors of TSAT++ (in personal commu-
nication) for its best possible performance. For further details on
these features, see (Armando et al 2000; 2004).

236

Yices. Finally, Figure 2(c) demonstrates further disparitybe-
tween CircuitTSAT and the other solvers forK = 7. Here,
the running time of CircuitTSAT is less than that of TSAT++
and Yices by roughly an order of magnitude forN ≥ 100.

We now describe several performance trends with increas-
ing values ofK andN . Firstly, for fixedK, increasing the
value ofN has more impact on the running times of TSAT++
and Yices than on CircuitTSAT. CircuitTSAT consistently
takes only 3–7 times more CPU time to solve DTP instances
with increasingN ∈ {50, 100, 150, 200} for all values ofK.
On the other hand, in several regions, the running times of
TSAT++ and Yices increase by more than an order of mag-
nitude for increasingN ∈ {50, 100, 150, 200}. Secondly,
asK increases, the performance of CircuitTSAT improves
dramatically. This is in sharp contrast to the behavior of
TSAT++ and Yices. While TSAT++ and Yices benefit from
largerK whenN ≤ 100, their performances stagnate and
even deteriorate forN > 100. We observed a third trend in
the percentages of problem instances for which the solvers
timed out. These statistics are provided in Table 1. AsK
increases, CircuitTSAT times out on a smaller percentage of
instances than the other solvers. For example, whenK = 7
andN = 200, CircuitTSAT finds solutions to all the prob-
lem instances while TSAT++ and Yices time out on as many
as 65.9% and 80.6% of the instances respectively. Consis-
tent with our previous observation, the table also shows that
unlike for the other solvers, the percentage of time-outs de-
creases dramatically for CircuitTSAT with increasingK.

We attribute the superior scalability of CircuitTSAT to
the following brief explanation. In the other solvers, asK
increases, the number of Boolean variables created for the
predicates also increases. This causes a combinatorial ex-
plosion in the search tree, thereby causing the performances
of these solvers to deteriorate. In CircuitTSAT, the num-
ber of Boolean variables in the SAT encoding also increases.
However, fixing the bits that represent the original temporal
variables determines the values of all other auxiliary vari-
ables (by unit propagation). Since the number of these “in-
put” bits does not change withK, adding disjuncts to each
DTC actually serves as a relaxation for the search space.

Variants of CircuitTSAT:
To further investigate CircuitTSAT, we performed addi-
tional experiments to compare different variants of it. We
used the different bit-variants of CircuitTSAT in combina-
tion with the JeruSAT/MiniSAT SAT solvers (Nadel 2002;
Eén and Sörensson 2003). We ran experiments with pa-
rametersK ∈ {2, 3, 5}, N ∈ {50, 100, 150, 200}, M/N ∈
{1, 2, 3, 4, 6, 8} andL = 100. Figure 3 shows some graph-
ical comparisons of the relative performances of these vari-
ants as well as the performances of TSAT++ and Yices for
N = 150. First, we observe that the MiniSAT versions
are outperformed by the JeruSAT versions. Second, consis-
tent with our previous observations, CircuitTSAT (with the
JeruSAT solver) outperforms TSAT++ and Yices for larger
values ofK. Further, we notice that the performance gap
between themin andmaxversions of CircuitTSAT signifi-
cantly decreases with increasingK. While the remarkable
performance of themin version forK = 2 is due to a high

CircuitTSAT TSAT++ Yices

K = 3

N = 50 66.9% 0% 33.1% 68.1% 0% 31.9% 86.3% 0% 13.7%

N = 100 49.4% 0% 50.6% 45.0% 0% 55.0% 67.7% 0% 32.3%

N = 150 40.3% 0% 59.7% 35.2% 0% 64.8% 57.4% 0% 42.6%

N = 200 30.9% 0% 69.1% 28.6% 0% 71.4% 50.9% 0% 49.1%

K = 5

N = 50 100% 0% 0% 100% 0% 0% 100% 0% 0%

N = 100 99.7% 0% 0.3% 68.1% 0% 31.9% 100% 0% 0%

N = 150 98.6% 0% 1.4% 41.8% 0% 58.2% 36.9% 0% 63.1%

N = 200 92.0% 0% 8.0% 30.8% 0% 69.2% 14.6% 0% 85.4%

K = 7

N = 50 100% 0% 0% 100% 0% 0% 100% 0% 0%

N = 100 100% 0% 0% 89.0% 0% 11.0% 99.1% 0% 0.9%

N = 150 100% 0% 0% 51.7% 0% 48.3% 34.6% 0% 65.4%

N = 200 100% 0% 0% 34.1% 0% 65.9% 19.4% 0% 80.6%

Table 1: Shows the percentages of problem instances solved by
CircuitTSAT, TSAT++ and Yices. These percentages are shown
against the number of disjuncts per clause (K = 3, 5, 7) and the
number of temporal variables (N = 50, 100, 150, 200). For each
setting, we show a triplet(a, b, c) wherea, b andc are the percent-
ages of instances the algorithm (a) found a solution to, (b) found
that no solution existed, and (c) timed-out on.

percentage of miscued problem instances, no instances are
miscued even by theminversion for higher values ofK.9

Discussions and Future Work
Several immediate improvements can be incorporated into
future versions of CircuitTSAT. First, preprocessing steps
similar to those in (Armando et al 2004) can be integrated
into our approach. Unit DTCs (i.e., STCs) can also be pre-
compiled to reflect the implications of the known distance
graph. Second, better strategies for choosingq — possibly
even allowing distinct variables to have different bit-lengths
— could significantly boost the performance of CircuitTSAT
(especially for dealing with floating-point numbers). Third,
post-processing steps can be implemented to retrieve a con-
sistent STP from any solution to the SAT instance. Such
an STP represents a class of solutions to the given DTP —
thereby giving CircuitTSAT the same representational ben-
efits as the “disjunct selection”-based approaches.

The success of our approach also has implications in other
application domains. For one, our method can naturally
incorporate additional propositional variables in the sys-
tem. This suggests that “hybrid” constraints (involving both
propositional and temporal variables) would also be readily
amenable to our techniques. In turn, efficiently solving such
hybrid constraints opens up the possibilities of many appli-
cations of our techniques in planning and scheduling do-
mains — where causal interactions between actions together
with the underlying temporal constraints and resource con-
tentions between them can be cast as hybrid CSPs. Another
vein in our future work is therefore to apply our techniques
in planning and scheduling domains that include planning

9This is indicative of a relaxation in the search space for in-
creasingK as previously noted.

237

2 4 6 8 10 12 14
10

−1

10
0

10
1

10
2

10
3

M/N

Lo
g

of
 C

P
U

 T
im

e

Figure 2(a):Running times (K = 3)

2 4 6 8 10 12 14
10

−1

10
0

10
1

10
2

10
3

M/N

Lo
g

of
 C

P
U

 T
im

e

Figure 2(b):Running times (K = 5)

2 4 6 8 10 12 14
10

−1

10
0

10
1

10
2

10
3

M/N

Lo
g

of
 C

P
U

 T
im

e

Figure 2(c):Running times (K = 7)

CircuitTSAT (50 Vars)

CircuitTSAT (100 Vars)

CircuitTSAT (200 Vars)

TSAT++ (50 Vars)

TSAT++ (100 Vars)

TSAT++ (200 Vars)

Yices (50 Vars)

Yices (100 Vars)

Yices (200 Vars)

Time−out

Figure 2(d):Legend

Figure 2:The above figures show the relative performances of CircuitTSAT, TSAT++ and Yices. Figures 2(a), 2(b) and 2(c) show the log of
the median CPU times plotted againstM/N ranging from2 to 14 for K = 3, 5 and7 respectively. Each data point represents the median of
50 trials. (For clarity, the graphs forN = 150 are not explicitly shown here.)

with durative actions and resources (Do and Kambhampati
2003), over-subscription planning (Benton et al 2005), etc.

Finally, the work presented in this paper suggests a closer
examination of the utility of encoding specific kinds of com-
binatorial problems as SAT instances. Previous criticisms
of this approach were based on the inability of SAT solvers
to directly exploit theory-specific properties. However, the
empirical evidence in this paper suggests that modern SAT
solvers are able to exploit certain structural aspects of DTPs
in ways that are not necessarily captured by theory-specific
solvers — thereby also suggesting a closer examination of
other combinatorial problems that may be amenable to simi-
lar techniques. We also note that although CircuitTSAT out-
performs TSAT++ and Yices for large values ofK andN , its
performance is comparatively somewhat poorer for smallK
andN . This suggests that the solvers exploit different struc-
tural aspects of the DTP instances; and therefore, another
important line of research is to design DTP solvers that per-
form well in all regions — possibly by directly incorporating
theory-specific information into a specialized SAT solver.10

10For example, the MODOC planner (Gelder and Okushi 1999)

Conclusions
We reported on a new solver for large instances of the DTP.
This solver — referred to as “CircuitTSAT” — is based
primarily on the idea of employing compact circuit-based
representations of DTCs (akin to ripple-carry adders). We
described several implementation details of CircuitTSAT,
and empirically showed that it significantly outperforms
TSAT++ and Yices on a wide range of DTP instances.
We also commented on the implications of CircuitTSAT
and how circuit-based SAT encodings can exploit important
structural information in DTPs. Consequently, we also com-
mented on the importance of revisiting similar techniques in
a more general context.

References
Armando A., Castellini C. and Giunchiglia E. (2000). SAT-Based
Procedures for Temporal Reasoning. InProcs. of ECP’00.

Armando A., Castellini C., Giunchiglia E. and Maratea M.

employs a SAT solver that is designed specifically for solvingSAT
instances that encode planning problems.

238

1 2 3 4 5 6 7 8
10

−1

10
0

10
1

10
2

10
3

M/N

Lo
g

of
 C

P
U

 T
im

e

Figure 3(a):Running times (K = 2)

1 2 3 4 5 6 7 8
10

−1

10
0

10
1

10
2

10
3

M/N

Lo
g

of
 C

P
U

 T
im

e

Figure 3(b):Running times (K = 3)

1 2 3 4 5 6 7 8
10

−1

10
0

10
1

10
2

10
3

M/N

Lo
g

of
 C

P
U

 T
im

e

Figure 3(c):Running times (K = 5)

CircuitTSAT
max
Jeru

CircuitTSAT
+2
Jeru

CircuitTSAT
min
Jeru

CircuitTSAT
+2
Mini

CircuitTSAT
min
Mini

TSAT++

Yices

Time−out

Figure 3(d):Legend

Figure 3:The above figures show the relative performances of the different variants of CircuitTSAT along with that of TSAT++ and Yices
for N = 150. The different variants of CircuitTSAT use different SAT solvers and different bit-spaces. The superscript indicates the solver
(Jeru = JeruSAT, Mini = MiniSAT), and the subscript indicates the bit-space. Figures 3(a), 3(b) and 3(c) show the log of the median CPU
times plotted againstM/N ranging from1 to 8 for K = 2, 3 and5 respectively. Each data point represents the median of20 trials.

(2004). A SAT-Based Decision Procedure for the Boolean Com-
bination of Difference Constraints. InProcs. of SAT’04.

Benton J., Do B. and Kambhampati S. (2005). Over-Subscription
Planning with Numeric Goals. InProcs. of IJCAI’05.

Bryant R., Lahiri S. and Seshia S. (2002). Modeling and Verify-
ing Systems Using a Logic of Counter Arithmetic with Lambda
Expressions and Uninterpreted Functions. InCAV’02: 14th Inter-
national Conference on Computer Aided Verification.

Dechter R., Meiri I. and Pearl J. (1991). Temporal Constraint
Networks.Artificial Intelligence49(1–3).

Do B. and Kambhampati S. (2003). SAPA: A Multi-Objective
Metric Temporal Planner.J. Artif. Intell. Res. (JAIR)20.

Dutertre B. and de Moura L. (2006). The Yices SMT solver.
http://yices.csl.sri.com/tool-paper.pdf.

Eén N. and Sörensson N. (2003). An Extensible SAT-Solver. In
Proceedings of SAT’03.

Gelder A. and Okushi F. (1999). A Propositional Theorem Prover
to Solve Planning and Other Problems.Annals of Mathematics
and AI26(1-4).

Heuring V., Jordan H. and Murdocca M. (1997).Computer Sys-
tems Design and Architecture. Addison-Wesley.

Kumar T. K. S. (2003). Incremental Computation of Resource-
Envelopes in Producer-Consumer Models. InProcs. of CP’03.

Kumar T. K. S. (2005). On the Tractability of Restricted Disjunc-
tive Temporal Problems. InProcs. of ICAPS’05.

Kumar T. K. S. (2006). Tractable Classes of Metric Temporal
Problems with Domain Rules. InProcs. of AAAI’06.

Moskewicz M., Madigan C., Zhao Y., Zhang L. and Malik S.
(2001). CHAFF: Engineering an Efficient SAT Solver. InDe-
sign Automation Conference’01.

Nadel A. (2002). Backtrack Search Algorithms for Propositional
Logic Satisfiability: Review and Innovations. Master’s Thesis,
Hebrew University of Jerusalem.

Stergiou K. and Koubarakis M. (1998). Backtracking Algorithms
for Disjunctions of Temporal Constraints. InProcs. of AAAI’98.

Stergiou K. and Koubarakis M. (2000). Backtracking Algorithms
for Disjunctions of Temporal Constraints.Artificial Intelligence.

Tsamardinos I. and Pollack M. (2003). Efficient Solution Tech-
niques for Disjunctive Temporal Reasoning Problems.Artificial
Intelligence151(1-2).

239

