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ABSTRACT

Learning for security applications is an emerging field where
adaptive approaches are needed but are complicated by chang-
ing adversarial behavior. Traditional approaches to learning
assume benign errors in data and thus may be vulnerable to
adversarial errors. In this paper, we incorporate the notion
of adversarial corruption directly into the learning frame-
work and derive a new criteria for classifier robustness to
adversarial contamination.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Invasive software (e.g.,
viruses, worms, Trojan horses); G.3 [Probability and Statitics]:
Statistical computing; I.5.1 [Models]: Statistical; I.5.2 [Design

Methodology]: Classifier design and evaluation

General Terms

Security

Keywords

Adversarial Learning, Computer Security, Machine Learn-
ing, Statistical Learning, Robust Classification

1. INTRODUCTION
Applying learning algorithms to detection problems in se-

curity domains has received a great deal of recent attention.
Learning approaches are well-suited to these tasks because
of the rapidly-changing nature of adversaries and the need
for high-speed automated analysis of complex data. How-
ever, as has been witnessed in spam-detection, adversaries
adapt their approaches based on the detection algorithms.
A clever adversary can change their behavior either to evade
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or mislead a learning algorithm. When exposed to an adver-
sary, learning-based detection algorithms may not only be
ineffective, they can in fact become a hindrance or liability
to the system. Because of these threats, careful choice and
analysis of learning algorithms is critical.

In this paper, we propose a framework for analyzing and
selecting learning algorithms for security-sensitive learning
tasks. Based on a decomposition of the expected risk, we
propose a metric for classifier stability under contamination.
Our metric adds a new dimension to the process of selecting
a learning algorithm, which incorporates the security con-
cern of adversarial contamination.

Prior Work.
A great deal of prior work has addressed different aspects

of secure learning; e.g., [1, 9, 10, 11]. However, to our knowl-
edge, the only systematic approach to learning with contam-
inated data comes from robust statistics [7, 8]. Under this
framework, estimators are designed to be robust to contami-
nation. The major tool used to assess an estimator’s robust-
ness is its influence function—a measure of the asymptotic
bias due to an infinitesimal contamination. While having
a bounded influence function is important robustness prop-
erty, it does not completely describe a classifier’s stability.
Under contamination, the change to a classifier’s parame-
ters may be bounded but its classification performance may
still be dramatically decrease. To see this, consider that a
hyperplane that classifies well need only rotate 180◦ to clas-
sify poorly. In this paper, we derive a measure of classifier
stability that directly captures how contamination affects
classification performance; we call this classification robust-
ness.

2. CLASSIFICATION
In this section, we briefly introduce the classification prob-

lem and the framework of risk minimization. Data comes
from an input space denoted by X and the prediction space
is the set Y = {−1,+1}. These spaces are paired as the
space Z = X × Y and the training data points are paired
instances from this space: D = {(xi, yi) ∈ Z}N

i=1. We as-
sume the dataset is drawn independently and identically
distrubuted from a joint distribution PZ when there is no
adversarial influence.

A hypothesis (or classifier) is a function f mapping f :
X → Y. Of course, there are many such hypotheses belong-



ing to the hypothesis space F of all possible hypotheses.
For instance, learners often only consider the space of linear
classifiers of the form fw,b (x) = 2·I

[
w⊤x ≥ b

]
−1 where I [·]

is the indicator function for an event, w is the hyperplane’s
normal vector, and b is its bias. The rest of this section
discusses how a hypothesis is selected.

2.1 Statistical Learning
We formalize the learning process in terms of a two-step

process, in which a dataset is first produced (according to
some natural distribution) and a learning algorithm L uses
that dataset to produce a hypothesis as follows:

1. Nature: Produce dataset, D ∼ PZ

2. Learner: Produce hypothesis, f = L (D)
The learned hypothesis f produced by the learning algo-
rithm is a predictor that, when given a new instance x ∈ X
produces a prediction ŷ = f (x). This hypothesis is selected
by the learning algorithm L from its hypothesis space F
(presumably in accordance with the data D).
A performance measure is used to assess the ability of

the hypothesis to predict the label of a given data point.
In statistical learning theory, this performance measure is
called a loss function ℓ and assigns a non-negative cost for
making the prediction ŷ = f (x) when the true label is y;
that is, ℓ : Y × Y 7→ ℜ0+. For classification, the zero-one
loss captures the standard notion of loss, which is zero when
ŷ = y and one otherwise.1

For a given data distribution, PZ , the expected loss for
the hypothesis, f , assesses its prediction capability. The
expected loss is called the risk of the hypothesis and is

R (f ) = E(x,y)∼PZ
[ℓ (y, f (x))] .

For a fixed hypothesis, f , the risk is a quantity that can
be computed or estimated. However, notice that when the
hypothesis itself is selected by a procedure that depends on
data, the risk is a random variable. Hence, the expected risk
(over a random dataset D drawn from PZ) yields a measure
of how well a learning algorithm L performs over a particular
data distribution and will be the primary focus of this paper.

2.2 Risk Minimization Framework
Above, we introduced the standard risk approach to as-

sessing a learning algorithm and we now describe how risk
is used to compare and design learning algorithms. The
learner L is tasked with selecting a hypothesis f that, when
given a new data point x, best predicts its label y and its
performance is assessed by its risk R (f ). Since the hypoth-
esis is assessed according to its ability to minimize expected
risk, it is natural to consider learning algorithms that select
hypotheses that minimize risk. That is, the learning algo-
rithm should select a hypothesis f † ∈ F that minimizes risk
according to the data’s distribution PZ ; i.e.,

f † ∈ argmin
f∈F

R (f ) .

This procedure is the risk minimizer, but is generally not
possible to find since the distribution PZ is not known.

1In most settings, minimizing the zero-one loss is intractable
and a surrogate lost function is used instead. However, for
our purposes, we work with the zero-one loss directly.

2.2.1 Empirical Risk Minimization

While directly minimizing risk is infeasible since PZ is
unknown, the dataset D provides information about this
distribution. Under the usual stationarity assumption the
training data is drawn from same distribution PZ as the
test data. Thus, the learner can instead select a hypothesis
fN to minimize the empirical risk D ∼ PZ

RN (f ) =
1

N

∑

(x,y)∈D

ℓ (y, f (x))

where N = |D|. The practice of minimizing this surrogate
for the true risk is known as empirical risk minimization
[13].

2.2.2 Regularization

Since the dataset is of limited size, the learner must also
restrict the space of hypotheses, F . If the space of hypothe-
ses is too expressive, some hypothesis may fit the training
data exactly but may not make accurate predictions about
unseen instances. This phenomenon is known as overfit-
ting. To avoid overfitting the learner may use a small or
restricted space of hypotheses; e.g., linear classifiers. Alter-
natively, one could allow for a large space of hypotheses, but
penalize hypothesis complexity—a practice known as regu-
larization. The learner selects hypothesis fN that minimizes
the modified objective

RN (f ) + λ · ρ (f )

where the function ρ : F → ℜ is a measure of the complexity
of a hypothesis and λ > 0 controls the trade-off.

2.2.3 Risk Analysis

We now reexamine the expected risk of a learning algo-
rithm and break it into two components: one that captures
the cost of learning on a finite dataset and the second that
captures the cost inherent to the choice of hypothesis space.
Suppose that f ∗ is the hypothesis (not necessarily in F)
that minimizes the expected risk (over all datasets) and that
f † ∈ F is the minimizer in the hypothesis space. We want to
compare the expected risk of the hypothesis fN based on the
dataset to the expected risk of the optimal classifier. The
expected risk can be decomposed into two components:

ED [R (fN )− R (f ∗)] = ED

[

R (fN )− R
(

f †
)]

︸ ︷︷ ︸

εest

+ED

[

R
(

f †
)

− R (f ∗)
]

︸ ︷︷ ︸

εapprx

= εest + εapprx

where the outer expectation is over the training data D

drawn from the distribution PZ and the risks are expec-
tations over the test data also drawn from the same distri-
bution. This breakdown is the classical decomposition of
error in learning theory. The term εapprx captures the ap-
proximation error due to the limitations of the hypothesis
class and the term εest captures the estimation error due to
limitations of learning on a finite dataset. Motivated by an
extension to this decomposition of expected risk proposed by
Bottou and Bousquet [2], we now introduce our own third
component to the expected risk, which captures the error
due to adversarial contamination.



3. DATA CONTAMINATION
For the purposes of security analysis, we now assume that,

in addition to the training dataset being finite, it has also
been contaminated or altered by an adversary. We model
this contamination event as a transformation A : ZN → ZN

on the training data that produces the altered data as in
Dalvi et al. [4]. We view this as a game between the ad-
versary and the learner that proceeds in the following three
steps:

1. Nature: Produce true data, D ∼ PZ

2. Adversary: Contaminate dataset, D̂ = A (D)

3. Learner: Produce hypothesis, f̂N = L
(

D̂

)

Importantly, in this setting, there is some clean dataset
D drawn from the underlying distribution PZ and has been
transformed. The adversary presumably chooses his trans-
formation to maximize

ED

[

R
(

f̂N
)]

under some constraints but we are agnostic at this point to
the choice of A. We simply assume f̂N is the result of learn-
ing on contaminated data and again examine the difference
between the risk of the tainted hypothesis and of best hy-
pothesis. To this end we introduce, as intermediates, the
risk of the best hypothesis in F and the risk of a hypothesis
learned by the same algorithm on the clean dataset D. We
thus break this expected difference into three components:

ED

[

R
(

f̂N
)

− R (f ∗)
]

= ED

[

R
(

f̂N
)

− R (fN )
]

︸ ︷︷ ︸

εrbst

+ED

[

R (fN )− R
(

f †
)]

︸ ︷︷ ︸

εest

+ ED

[

R
(

f †
)

− R (f ∗)
]

︸ ︷︷ ︸

εapprx

= εrbst + εest + εapprx

Under this extended decomposition, we introduce a clas-
sification robustness term, εrbst, which measures the error
caused by the (adversarial) transformation A.

3.1 Analyzing Classification Robustness
The error term εrbst captures a notion of stability for the

learning algorithm, L. Clearly, if a learning algorithm is sta-
ble under a reasonable level of (worst-case) noise, this term
will be small and we can expect nearly the same risk from
function f̂N learned with the contamination as we would
obtain from a hypothesis fN learned from clean data. Nat-
urally, there are trade-offs between classification robustness
and the other forms of error; i.e., learning procedures that
are highly stable may not generalize as quickly (and hence
have a higher estimation error) or may come from an overly
restricted hypothesis class (and hence have a higher approx-
imation error). However, in this paper we focus solely on
the classification robustness and how it can be incorporated
to the design and selection of learning algorithms in contam-
ination settings.
Under certain assumptions, the stability error can be rewrit-

ten in several ways. Firstly, noting that the risk itself is an

expectation, we can merge the two risk terms as follows:

εrbst = ED

[

R
(

f̂N
)

− R (fN )
]

= ED

[

E(x,y)

[

ℓ
(

y, f̂N (x)
)]

− E(x,y) [ℓ (y, fN (x))]
]

= ED

[

E(x,y)

[

ℓ
(

y, f̂N (x)
)

− ℓ (y, fN (x))
]]

Examining this difference between losses, we can further re-
fine it under the assumption that the loss function obeys on
the following triangle inequality:

ℓ (x, y) ≤ ℓ (x, z) + ℓ (z, y)

ℓ (x, y)− ℓ (x, z) ≤ ℓ (z, y)

This triangle inequality is exhibited by the zero-one loss
since it is the discrete metric and yields the following bound:

εrbst ≤ ED

[

E(x,y)

[

ℓ
(

fN (x) , f̂N (x)
)]]

This bound is particularly interesting because it compares
two hypotheses not on how well they predict the true label
y but rather on how well the two hypotheses agree. In this
sense, this approach is similar to the notion of regret used
in online prediction games [3].

We can further expand the inner expectation for the clas-
sification functions with a label space Y = {−1,+1}, for
which the zero-one loss can be rewritten as

ℓ
(

fN (x) , f̂N (x)
)

= 1
2

[

1− fN (x) · f̂N (x)
]

. (1)

This result is derived from the fact that

fN (x) · f̂N (x) =

{

+1 if fN and f̂N agree on x

−1 otherwise
.

3.2 A Measure of Classification Robustness
Here we further expand our bound on the classification

robustness for certain families of classifiers. Namely, we con-
sider the family, F ind, of classifiers that can be expressed as
a threshold on a real-valued decision function g in the form

f (x) = 2 · I [g (x) ≥ 0]− 1

where g : X → ℜ. Based on the properties of the indicator,
I [·], for any pair of classifiers f1, f2 ∈ F ind, we have that

f1 (x) · f2 (x) = 2 · I [g1 (x) · g2 (x) ≥ 0]− 1 .

From this, the zero-one loss from Eq. (1) simplifies for clas-

sifiers fN and f̂N in this family to

ℓ
(

fN (x) , f̂N (x)
)

= 1− I [gN (x) · ĝN (x) ≥ 0] .

Thus, to minimize the expected risk under the zero-one loss,
we can instead minimize

Px∼PX
(gN (x) · ĝN (x) < 0)

where PX is the marginal distribution over X . Taking the
expectation over the dataset of this probability for the cor-
responding decision functions ĝN and gN yields our upper
bound on classification robustness,

εrbst ≤ ED [Px∼PX
(gN (x) · ĝN (x) < 0)] .

Unfortunately, this notion of stability is highly dependent
on the unknown marginal distribution PX of the test data.
At issue is the fact that, unless f̂N and fN everywhere agree



or disagree in sign, this probability can be made arbitrar-
ily high or low if the distribution PX is concentrated in the
classifiers’ region of agreement or disagreement, respectively.
We desire a measure of robustness that is distribution inde-
pendent and thus choose an alternative measure of classifi-
cation robustness that is agnostic to the distribution of the
test data. We therefore measure the classifiers’ agreement
against a uniform distribution U on the data and thus define
the surrogate measure2

ε̂rbst , ED [Px∼U (gN (x) · ĝN (x) < 0)] . (2)

This quantity directly measures the stability of a learning
algorithm’s predictions due to a transformation on its train-
ing data (as to be discussed in the next section) whereas
prior robustness criteria assessed robustness indirectly by
measuring the sensitivity of learned parameters.

3.3 Application to Linear Classifiers
A special case of the family of thresholded real-valued

functions occurs when the function g is a linear function
that can be expressed in terms of a normal vector w and
displacement b as g (x) = w⊤x − b. Here we consider the
special case when b = 0 (non-zero displacements can be ac-
counted for by appending it to the normal vector). For this
family, F lin, the poison and clean hypotheses are parameter-
ized by ŵN and wN respectively and from Eq. (2) we want
to minimize the expected value of

Px∼U

(

wN
⊤
x · ŵ⊤

Nx < 0
)

.

We can consider the normal vectorswN and ŵN to have unit
length (their norm can be absorbed into the 0). Dasgupta
et al. [5] note that the above probability over the uniform
distribution is simply given by

1
π
arccos

(
wN

⊤ŵN

‖wN‖ ‖ŵN‖

)

and thus, the classification robustness of the linear classi-
fiers is given simply by 1

π
times the expected angle of the

normals for the hyperplane learned on transformed and non-
transformed data (varying from 0 when the normals are
aligned to 1 when they are oppositely aligned). This mea-
sure of stability corresponds to our previously stated men-
tioned notion in that (1) it accounts for hyperplane rotation
in measuring error and (2) it doesn’t consider the magnitude
of the normal (which does not affect the classifier’s decision
performance).

Support Vector Machines.
Support vector machines and other kernel-based classifiers

can also be assessed under this analysis because they are
linear in their feature space and their normal vector can
be expressed simply as a linear combination of the training
data. Thus, computing the above angle is feasible using the
kernel matrix.

2In some settings, it may be possible to bound εrbst di-
rectly. However, ε̂rbst is more desirable in a sense, because
the uniform distribution distributes its mass over X equally.
Thus, ε̂rbst is a more distribution-independent measure of
the learning algorithm’s stability since all discrepancies be-
tween the clean and contaminated hypotheses are equally
weighted.

4. FROMTHEORYTOPRACTICALALGO-

RITHMS
In the preceding section, we derived the notion of classi-

fication robustness but the quantity we derived, ε̂rbst, can
not be directly calculated in practice unless both the clean
and contaminated classifiers are known or can be inferred.
In practice, we believe exact computation of ε̂rbst may not
generally be possible but it could be bounded (as with εest
and εapprx) for a particular family of adversarial transforma-
tions; i.e., the set of contamination actions available to the
adversary. By bounding the classification robustness under
a particular contamination model, a worst-case bound is ob-
tained and can be used as a criteria for selecting algorithms
for a particular setting where that particular contamination
model is realistic. Thus far, no non-trivial bounds on ε̂rbst
have been obtained for any algorithm and we leave this task
to future work. However, below we discuss a set of different
contamination models that may arise in security-sensitive
applications to motivate further research.

Thus far, our analysis assumed that there is some trans-
formation, A : ZN → ZN , that alters the training data
to a limited extent. Now we briefly explore realistic sce-
narios for data corruption/transformation and we discuss
the security implications of these settings. For each model,
we describe how the adversarial contamination changes the
data and what limitations are placed on the extent of con-
tamination. The task that lays ahead is bounding ε̂rbst for
algorithms under the following contamination models.

4.1 Outliers
In many applications, it is appropriate to assume that

some of the training data are outliers (as in the usual con-
tamination model for robust statistics [7, 8]); that is, some
fraction of the data points are from an altogether different
source than the data distribution PZ . These outliers may be
due benign mistakes such as mislabeled data points or can
be maliciously chosen by an adversary. Naturally, for learn-
ing to be successful, we must assume that only a fraction ǫ

of the data points are outliers. The transformation selects
a fraction ǫ of the dataset and replaces it with data points
drawn from some distribution QZ .

4.2 Data Perturbation
An alternative model for data corruption involves noise

among all the data points xi ∈ D. These models for noise
have previously been used to design more robust kernel learn-
ing algorithms [12, 14]. In this scenario, all of the data is
perturbed by either a natural source of noise or by a mali-
cious one. Of course, the level of noise must be bounded and
we can think of A as adding some noise σi the data points
with the limitation that the total noise is less than ǫ.

4.3 Label Flipping
Yet another model for data corruption instead assumes

that noise occurs amongst the labels; that is, some process
causes labels in the dataset to be flipped: yi → −1 · yi.
As with the outlier model, the size of the contamination is
measured the fraction ǫ of labels that are flipped.

4.4 Feature-Constrained Outliers
The last model of corruption we consider in this paper is

one in which the adversary can potentially alter any data
points but can only change a subset of the features. This



model of contamination was used previously by Globerson
and Roweis to model feature deletion [6]. Obviously, the
power of the adversary in this model is measured in terms
of the fraction of features ǫ that can be influenced by the
adversary.

5. DISCUSSION
In this paper, we introduce a measure of classifier stability

under adversarial contamination to the training data, which
we call classification robustness, ε̂rbst. This quantity is de-
signed to assess the stability of an algorithm’s prediction
performance for a particular realistic model of adversarial
contamination. Further, for linear classifiers, we showed that
this measure intuitively corresponds to the expected rotation
angle in the hyperplane due to the contamination. While we
believe that ε̂rbst is the appropriate measure for assessing the
threat posed to a classifier, it remains to be seen which clas-
sifiers perform well under this measure. Designing classifiers
to trade-off the traditional measures of generalization per-
formance and classifier robustness is a potentially lucrative
area for future work because we believe that assessing al-
gorithms’ classifier robustness under an appropriate threat
model is a critical objective for security applications.
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