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Abstract

Many researchers have applied statistical analy-

sis techniques to email for classification purposes,

such as identifying spam messages. Such ap-

proaches can be highly effective, however many

examine incoming email exclusively — which

does not provide detailed information about an

individual user’s behavior. Only by analyzing

outgoing messages can a user’s behavior be as-

certained. Our contributions are: the use of em-

pirical analysis to select an optimum, novel col-

lection of behavioral features of a user’s email

traffic that enables the rapid detection of abnor-

mal email activity; and a demonstration of the

effectiveness of outgoing email analysis using an

application that detects worm propagation.

1 Introduction

Electronic mail has become one of the most ubiq-
uitous methods of communication. By 2006, global
email traffic is expected to surge to 60 billion messages
daily (International Data Group, 2002). However, this
explosive growth comes with a variety of problems.
Unsolicited marketing messages, or spam, account for
more than half of the total daily message traffic (Mes-
sage Labs, 2004). In addition, at least eight out of the
ten computer worms most frequently reported during
2004 to a prominent anti-virus company spread via
email (Sophos Corporation, 2004). Finally, phishing
attacks are a growing concern.

Current methods for detecting email system abuse
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mostly work by examining characteristics of incom-
ing messages. For example, spam detectors calculate
statistical features on received email for classification.
Current commercial virus scanners compare hash val-
ues calculated on each arriving message to human-
generated signatures.

While such approaches are quite effective, we believe
that several improvements can be made. First, to the
best of our knowledge, the features used in current
techniques only examine incoming email, which is usu-
ally composed of messages from several distinct users
and could be contaminated with spam and virus email.
Thus, mail in a specific user’s inbox cannot be used
to profile that user’s behavior. Outgoing email, how-
ever, can be observed to characterize a user’s normal
email behavior, after which abnormal behavior caused
by a compromised machine can be detected and con-
tained at the source. This individual-user based anal-
ysis, when combined with techniques that examine in-
coming mail, could form an extremely strong defense
against the spread of novel worms and spam.

Second, we find that many proposed email classifica-
tion techniques take advantage of statistical methods.
However, we believe that their performance can be im-
proved by more judicious feature selection. From our
survey of current literature, we feel that the conse-
quences of feature selection have often been underem-
phasized in the anti-spam and anti-virus community.

To address the first problem, we provide a collection
of novel features designed to capture a user’s outgo-
ing email behavior, around which statistical classifica-
tion models can be built. However, any large, diverse
user population will have users that send email infre-
quently, making initial per-user model creation diffi-
cult for such users. Nonetheless, through empirical
analysis of the Enron dataset (Klimt & Yang, 2004),
we observe that users can be grouped into common
clusters enabling sets of users to be largely represented
by a single behavioral model.



For the second problem, we present techniques from
statistical learning theory that can be applied to fea-
ture analysis. We demonstrate the utility of these tech-
niques by applying them to our feature set within the
context of detecting novel worm propagation.

This paper is organized as follows: Section 2 dis-
cusses relevant previous research, Section 3 describes
our email analysis methods, Section 4 presents our fea-
ture analysis approach, and we demonstrate our tech-
niques with an application in Section 5. We close with
a few thoughts on our work and future directions.

2 Related Work

Statistical classification of email is an active research
area. Some of the features we use to characterize
user behavior have been used previously for classify-
ing spam (Graham, 2002) and detecting novel email
viruses (Stolfo et al., 2003; Stolfo et al., 2004). How-
ever, previous techniques have not examined the con-
tributions of these features to their classification or the
sensitivity of their model to those features.

The work on spam classification using feature selec-
tion has mostly been based on heuristics (Meyer &
Whateley, 2004), and in a fewer cases, has applied well-
known statistical methods from text classification (Sa-
hami et al., 1998; Kolcz et al., 2004).

One interesting method of examining messages is the
construction of social networks (Boykin & Roychowd-
hury, 2004; Newman et al., 2002). In these models,
users within a network are considered as nodes of a
graph, and communication between any two nodes is
indicated via an edge between the nodes. Cliques of
nodes form a social network, indicating common com-
munication patterns. Communication that violates
these behavioral patterns is considered abnormal.

Stolfo et al. created an email data mining system that
uses social network analysis along with other user be-
havior features to identify viral propagations (Stolfo
et al., 2004; Stolfo et al., 2003). The system main-
tains user cliques for every user in the system. Other
features considered include variance in number of dis-
tinct recipients, send rate, and number of emails with
attachments over a window of emails. Histograms
based on these features are then constructed to profile
a user’s current and long term email behavior. Our
results include features used by the authors.

3 Feature Descriptions

The term feature describes a statistic that represents
a measurement of some aspect of a given user’s email
activity or behavior. We focus in this paper on fea-

tures we believe from observation could be useful in
detecting abnormal sending behavior that results from
a worm or virus infection. Similar techniques could
also be applied to design features for spam detection.

We selected and implemented two dozen separate fea-
tures with the underlying goal of obtaining a set of
statistics that accurately distinguishes between normal
and abnormal email activity. Each feature returns ei-
ther a continuous or multinomial value — as an exam-
ple, a frequency calculation returns a number, whereas
a feature involving types of email attachments is rep-
resented as an array of bits, where each bit represents
the presence of a specific type of attachment.

Our features consist of those calculated on a single
email (i.e., single points in ongoing email activity) and
those that examine several emails over a fixed amount
of time (i.e., trends in message characteristics, such
as a running average of the number of characters in a
single user’s email subjects).

The following sections briefly describe our feature
choices and why they are included. We revisit the
question of the importance of each feature in distin-
guishing between separate users in Section 4.

3.1 Per-Email Features

The following sections describe numerical values cal-
culated on a per-email basis.

3.1.1 Single Email Multinomial-Valued
Features

Features in this category represent their output as one
or more bits. Multi-bit or multinomial return values
are in the form of a bit string.

Presence of HTML: There are exploits resulting
from buggy HTML parsing by the mail user agent,
e.g., the Kak worm (Symantec Corporation, 2005).

Presence of script tags/attributes: These statis-
tics are particularly useful in detecting emails that
are potential security risks.

Presence of embedded images: Embedded im-
ages are often used by spammers to verify address
lists, and could be used to exploit buggy image pro-
cessing, e.g., the Microsoft JPEG vulnerability (Mi-
crosoft Corporation, 2004).

Presence of hyperlinks: Several worms propagate
by emailing links to infected web pages, e.g., the
Bubbleboy virus (Symantec Corporation, 2005).

MIME types of file attachments: The MIME
type of a file is assigned by the sending mail user



agent either using magic numbers (see below), or
through table-lookup on the filename extension.
Each binary value represents the presence of a spe-
cific type of file.

Presence of binary, text attachments: This
multinomial statistic helps in the case where an
email has a binary or text file attached whose type
is corrupt or unknown.

UNIX “magic number” of file attachments:
Worms often assign misleading MIME types to fool
virus scanners, e.g., Nimbda (Symantec Corpora-
tion, 2005). The magic number is an accurate
method of determining the true file type. If an at-
tachment’s magic number does not correspond to its
MIME type, it could be malicious.

3.1.2 Per-Email Continuous Features

Number of attachments: Most people do not
attach many files to their email, however several
worms send messages that require opening an at-
tachment to propagate.

Number of words/characters in the subject and
body: These features help build a basic profile
of the user’s writing characteristics. Most virus
text is randomly chosen, and spam messages have
been found to share certain characteristics (Graham,
2002).

3.2 Features Calculated Over a Sending
Window

We now describe numerical values calculated over a
window typically consisting of the user’s last twenty
messages. All statistics are continuous.

Number of emails sent: Worms and spam-bots
tend to send emails faster than the average user.

Number of unique email recipients: This fea-
ture counts addresses in the To:, CC:, and BCC: (if
available) headers. The frequency with which one
sends mail to distinct users captures an important
aspect of email behavior.

Number of unique sender addresses: Many users
have multiple active accounts on the same machine.
However, a single machine sending from a large num-
ber of addresses at a high rate could indicate that
the machine is compromised.

Average number of words/characters per sub-
ject, body; average word length: These fea-
tures capture trends in email wording that could
separate normal email from malicious activity, and
among users.

Variance in number of words/characters per
subject, body; variance in word length:
These types of features have been used in previous
work with some success to detect the behavior of
email viruses.

Ratio of emails with attachments: Most users do
not send large amounts of consecutive emails with
attachments, whereas most worms do.

4 Feature Analysis

Our feature set is designed to capture specific elements
of user email behavior that separate normal from ab-
normal (worm propagation) activity. To better un-
derstand the individual contributions of each feature
to the overall effectiveness of our technique, we next
present an analysis of the ability of each to capture
information specific to individual behavior.

The methods we apply have been discussed in statis-
tics literature and used in previous work to identify
spam and classify text. However, to the best of our
knowledge, they have not been applied to behavioral
analysis for detecting novel worms. While our features
are specific to behavioral analysis, these techniques are
easily adapted to improve other classification problems
through increasing understanding of the role of each
feature.

We present our analysis in several parts: the feature
selection problem background, feature histograms that
capture separate elements of unique per-user behavior,
methods for using covariance between the user labels
and the data to choose the most relevant features for
distinguishing viruses from normal user behavior, and
a method for performing greedy feature selection.

4.1 Background

The problem of optimally selecting statistical features
can be categorized as feature extraction and feature
selection. Feature extraction creates a smaller set of
features from linear combinations of the original fea-
tures, while feature selection simply chooses a subset
of the original features (in essence a boolean version
of feature extraction).

In feature selection, choosing the subset of features
that optimally predicts the desired function is com-
putationally infeasible (NP-complete) - the number
of subsets of a set grows exponentially with the set
size. There are approximation algorithms, including a
method using Principle Component Analysis (PCA), a
feature extraction approach, to find directions in fea-
ture space that maximize variance. Classical PCA de-
termines such directions, but fails to find individual
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Figure 1: Feature histograms for two users in the Enron
dataset and their differences

features that maximize variance. Instead, it deter-
mines linear combinations of the feature set. Näıve
greedy selection of features by choosing the dominant
feature in each principle component is effective, but
fails to account for redundancy in the feature set. The
selectivity of PCA can be enhanced by modifying the
optimality criterion to favor sparse directions of max-
imum variance by imposing either an L1 constraint
on the principle components (Zou et al., 2004) or
a sparsity constraint through Semi-Definite Program-
ming (d’Aspremont et al., 2004). These PCA-driven
approaches can easily be incorporated in a framework
for Directions of Maximum Covariance (Shawe-Taylor
& Christiani, 2004) to discover directions in the data
that maximize variation in labels.

4.2 Feature Histograms

One of the methods used in previous work on virus
detection to classify behavior is histogram analysis.
Looking at the distance between histograms of a spe-
cific feature over the data of two separate users is one
method of estimating how similar the two are. We ap-
ply similar techniques to demonstrate the difference in
per-feature distributions among individual users. For
the analysis to follow, we used data for all users in the
Enron data set that had sent-mail folders. There were
a total of 126,078 emails between 148 users, with each
user having between 3 and 8926 emails. Most users
had under 1000 emails.

The top graph in Figure 1 shows normalized his-
tograms for two users in the Enron data set of the
values for the feature calculating the number of dis-
tinct addresses email is sent to over a window of mes-
sages. By taking the absolute value of the difference
of each bin over these two histograms, we generate the
bottom graph in Figure 1, which gives a visual rep-
resentation of how different the two users’ behavior is

with regards to this feature. By summing up the his-
togram difference, we can generate a rough metric of
per-feature user similarity.

To illustrate how our features separate individual be-
havior, we consider different pairs of users to plot
trends in this metric. Figure 2 shows the per-feature
histograms of normalized histogram differences be-
tween all combinations of users in the Enron dataset.
Note that the maximum value of this difference is 2
(when the histograms being compared do not have any
overlaps) and the minimum value is 0 (when the his-
tograms completely overlap each other). For all his-
tograms shown in Figure 2, we used a bin size of 0.02
(by dividing the range between 0 and 2 into 100 equal-
size bins).

Figure 2 shows two important characteristics. First,
it demonstrates that our behavioral features are dif-
ferent per user. Second, each feature behaves slightly
differently over all users; certain statistics vary more
widely than others. Both of these points motivate the
analysis presented in the next section.

4.3 Covariance Analysis

Many statistical analyses exist for identifying the rele-
vance of a feature to a given dataset. One of the more
well known techniques is PCA which determines the
directions in feature space that maximize variance of
the multivariate random variable X.

However, while PCA is useful in many settings, its
choice of directions in feature space do not necessarily
lead to good classification. Instead, we apply a similar
method, called maximum covariance (Shawe-Taylor &
Christiani, 2004), that determines the directions in
feature space that maximize the covariance between
observations and their labels (correct classifications).
This is accomplished through a singular value decom-
position of the covariance matrix Cxy = cov [X, Y ], or
the correlation matrix cor [X, Y ] where Y is the corre-
sponding set of labels for each observation.

To apply the directions of maximum covariance tech-
nique, consider X to be an m-dimensional random
variable representing the features of a given observa-
tion and Y to be an k-dimensional random variable
corresponding to the label of X. Given a set of n
observations of pairs {(Xi, Yi)}ni=1, the empirical co-
variance matrix is given by

Ĉxy = E
[
(X −E [X])(Y −E [Y ])T

]
= 1

n

∑
i XiYi − 1

n2

∑
i Xi

∑
i Yi

The singular value decomposition decomposes Cxy by
Cxy = UΣV T where U is a m ×m unitary matrix of
x-principle components, Σ is a diagonal matrix of co-
variances, and V is a k×k unitary matrix of y-principle
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Figure 2: Per-feature histograms of histogram differences between all combinations of users in the Enron dataset. The
dotted lines show the means for each histogram.

components. By computing directions of maximum co-
variance, the resulting principle components maximize
the covariance between the random variable X and Y .

Figure 3 demonstrates this approach. We performed
the maximal covariance analysis to distinguish users
in the Enron dataset generating a “signature” for each
user based on their distinguishing features. This sig-
nature is depicted as a single column in Figure 3. By
clustering the users based on these signatures we were
able to identify groups of users with similar behavioral
characteristics as shown in the figure. The clusters in-
dicate that several canonical behaviors can account for
the majority of individual user behaviors making the
deployment of systems based on per-user models fea-
sible.

4.4 Feature Ranking

The task of feature selection, a concept that has been
well studied in the statistics and machine learning lit-
erature (Guyon & Elisseeff, 2003; Blum & Langley,
1997), is the process of choosing a subset of a fea-
ture space that best represents the problem at hand
while introducing the minimal amount of noise. We
now present a simple method for using the results of
covariance analysis to reduce the feature set by con-
centrating on the features that contribute the most co-
variance with the desired target labels Y . Moreover,
we show in Section 5 that judicious feature selection
significantly enhances classifier accuracy.

The simplest method to perform feature selection via
covariance analysis is a greedy approach in which fea-
tures are ranked according to their contribution to
the first principle component of the covariance ma-
trix. Suppose that the first principle component is
given by u1 = 〈u1,1, u1,2, . . . , u1,m〉. Then we simply

rank the i-th feature according to its corresponding
squared contribution, u2

1,i. However, this näıve selec-
tion mechanism entirely ignores the possibility of re-
dundancy between features.

To remove some degree of feature redundancy, we can
deflate the covariance matrix as features are chosen. In
this technique, features are selected in a greedy fash-
ion, but after each selection, the covariance matrix is
deflated by the basis vector corresponding to the se-
lected feature. The result of this operation is

C
′

xy ←
(
Im − eie

T
i

)T
Cxy

(
Ik − αiα

T
i

)
where ei is the i-th basis vector, Im is the m × m
identity matrix, , Ik is the k × k identity matrix, and
αi = Cxyei/ ‖Cxyei‖. By recalculating the principle
components from the deflated covariance matrix, co-
variance captured by the selected feature is removed so
that subsequent selections concentrate on portions of
the covariance not captured by initial choices. By de-
flating, redundancy can be reduced, but the selection
process is still greedy so the optimal subset of features
is not necessarily chosen.

The greedy approaches presented here suffice for our
demonstration of feature selection. In particular, in
analyzing the features most relevant for distinguish-
ing between a user and our test viruses, we found the
following partial ranking:
1. Ratio of emails with attachments
2. Binary attachment
3. MIME type application/octet-stream
4. Magic type application/x-ms-dos-executable
5. Unclassified binary magic type
6. Frequency of emails in window
7. Number of attachments

Not surprisingly, the dominant features personify the



Figure 3: A plot of the direction of maximal covariance for each user in the Enron data. The users are clustered based
on these directions to emphasize the similarity between users. The obvious clusters are circled for clarity.

fact that viruses’ behavior deviates primarily in the
number and type of attachments used as well as the
rate at which they send email. This list demonstrates
the redundancy problem in that three of the top five
features are related to whether an executable attach-
ment is present. In the future, more judicious prun-
ing of redundant features is warranted to capture the
essential information. Preliminary feature selection
based on Fisher discriminant analysis (Shawe-Taylor
& Christiani, 2004) produced results similar to our
method.

5 Application: Novel Worm Detection

One of the most prevalent security problems in com-
puting today is the rampant proliferation of malicious,
self-propagating computer viruses known as worms.
While vulnerabilities exploited by virus authors vary
widely, some of the most damaging worms have used
email to propagate. As an example, the 2004 My-
Doom email worm was one of the fastest spreading
email worms to date, and some of its variants continue
to slip by virus scanners.

While protection against computer viruses in general
continues to be an area of intense research, tradi-
tional anti-virus defenses deployed in the field have not
changed significantly for many years. Unfortunately,
recent worms have demonstrated that in the time it
takes to generate new signatures and apply them to
anti-virus scanners, widespread infection among vul-
nerable hosts can already occur.

Our method of profiling email user behavior is very ap-
plicable to the problem of detecting novel worm prop-
agation. To choke off avenues for infection as quickly
as possible, we use our features to classify outgoing
mail traffic so that machines suspected of being com-
promised can be quickly isolated.

We demonstrate the effectiveness of our feature set at
determining worm infections with several model types,
including Support Vector Machines (SVMs), and sim-
ple Näıve Bayes classifiers. In addition, we show how
the analysis presented in Section 4, when applied to
feature selection, dramatically impacts their perfor-
mance.

We discuss the application in three parts: construction
of the training and testing data, results using SVMs,
and results using Näıve Bayes classifiers.

5.1 Evaluation Methods

We used several virus-free data sources: a corpus cre-
ated by a custom real-time email interception frame-
work that collected data from 20 volunteers in our de-
partment, the Enron data set, and several user’s sent
mail folders. These data sets helped us determine the
distribution shapes of continuous features, which in
our experiments were Gaussian or Exponential.

We captured real email worm messages from the
Bagle.f, Netsky.d, MyDoom.u, MyDoom.m, and So-
big.f email worms by infecting VMWare virtual ma-
chines and using a transparent SMTP proxy setup to



intercept all SMTP traffic on port 25. We chose these
worms both due to their virulence and because each
behaves in a slightly different manner with regards to
our features.

We constructed training and test sets by creating ar-
tificial traces combining our clean and infected email
data. The clean email trace was obtained from one of
the authors’ ‘Sent mail’ folder. To simulate worm ac-
tivity, we interleaved viral emails into the clean email
corpus. The dates of the infected messages were cor-
rected to maintain consistency, but interarrival times
were kept the same so that frequency information was
retained. The training set consisted of 800 normal
emails and 800 viral emails from 2 different viruses
(400 emails from each virus). The test set consisted
of 3000 normal emails and 1200 viral emails from 3
different viruses.

We next examine the performance of classification
models in detecting viral traffic using our artificial
email traces. In winnowing down our feature set to
the most relevant features, we use several well-known
statistical methods to show general degradation in per-
formance as the feature set grows in size.

5.2 Support Vector Machines

The effectiveness of feature selection can be seen in
the performance of anomaly detection via the one-class
Support Vector Machine (SVM). In this paradigm, the
objective is to learn the region of support of a distribu-
tion of “normal” data; that is, the area that contains
most of the probability mass. A one-class SVM applies
a linear algorithm that attempts to maximally sepa-
rate the “normal” data from the origin via a hyper-
plane boundary. This technique’s properties enable it
to be transformed into a non-linear algorithm by appli-
cation of a similarity measure known as a kernel. The
details of this technique are beyond the scope of this
paper. See (Shawe-Taylor & Christiani, 2004) for a
thorough explanation of kernel techniques and SVMs.

For our purposes, the relevant detail of the one-class
SVM is our choice of kernel. For this exposition, the
Gaussian (RBF) kernel was applied after standardizing
the data. The one-class SVM was trained to allow only
a small fraction, 0.1%, of outliers during training.

5.3 Näıve Bayes Classification

To further demonstrate the importance of judicious
feature selection, the process was applied to a two-
class Näıve Bayes classifier. Näıve Bayes models clas-
sify by applying Bayes rule to observed data via class-
conditional distributions. The probability of the data
is given by the distribution’s fit to known infected

data. The simplifying assumption made by Näıve
Bayes models is that the features of an observation
are independent given its classification. While this as-
sumption is often violated, the model is widely used in
spam detection (Meyer & Whateley, 2004; Segal et al.,
2004) and suffices for our purposes of demonstrating
model degradation due to irrelevant features.

5.4 Discussion

The results of testing the SVM and Näıve Bayes mod-
els with a variable number of features are shown in
Figure 4 as plots of the overall classification accuracy.
While not shown in the figure, the false positive rate
generally started high due to the lack of generality
caused by fewer features and decreased as more fea-
tures were added. The false negative rates generally
increased due to overfitting as extraneous features were
added (although a few experiments initially had high
false negative rates due to the lack of generality of a
limited number of features).

It is also evident in Figure 4 that the degradation in
performance of the Näıve Bayes and SVM models dif-
fer. The step-like performance of Näıve Bayes is at-
tributable to the thresholding of the posterior prob-
ability in determining the classification of an email.
Meanwhile, the more erratic behavior of the SVM is
likely due to its instance-based nature. The SVM’s
classification boundary is supported by representative
emails which may change substantially as the feature
set is altered.

These experiments reflect well known guidelines; re-
gardless of the model, too few features are insuffi-
cient for generality while too many features cause over-
fitting. In addition, the curse of dimensionality, which
says that the size of the training set necessary to learn
the classification function grows exponentially with re-
spect to the dimensionality of the data, further deters
a bloated feature set.

6 Conclusion and Future Work

This paper presents an approach to virus detection
using feature generation on outgoing email traffic to
build models of user behavior. The approach is aug-
mented by pruning irrelevant features. This feature set
is shown to be effective in capturing the differences be-
tween user and virus behavior. Moreover, initial anal-
ysis indicates that user behavior can be clustered into
sets of common models that describe the general be-
havior patterns of most users hence making a large
scale detection system feasible.

As was demonstrated in Section 5, a judicious selection
of features can significantly improve the performance
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Figure 4: (a) Change in model accuracy as more features are greedily added to an SVM model. (b) Change in model
accuracy as more features are greedily added to a Näıve Bayes Classifier. In the key, the first two specify the viruses
trained against, and the last three the viruses tested against.

of statistical learning techniques. This is because fea-
tures that are irrelevant to the classification problem
can cause a classifier to learn sub-optimal rules result-
ing in overfitting. While this problem is not ubiquitous
among all classifiers (some incorporate feature selec-
tion directly into learning, e.g., decision trees), prun-
ing out irrelevant features often improves performance
by decreasing the dimensionality.

The prototype explained in Section 5 is a first step in
designing a complete system for monitoring outgoing
traffic to detect local infections. There are several fea-
tures based on word distributions and social network
analysis that can be included in our feature set for
better prediction of user behavior. In addition, any
deployable system will have to account for the tem-
poral changes in user behavior via periodic retraining.
These considerations are being incorporated in our on-
going design of a virus detection engine.
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