
Session 9 

I. Announcements [5 minutes] 
• Homework 4 is online and is due November 4th 

o Get started early and get ahead of the game. 
• Exam statistics: 

Number of grades reported:    111 
Mean:                           60.1 
Standard deviation:       14.9 
Minimum:                     17.0 
1st quartile:                  50.5 
2nd quartile (median):   63.0 
3rd quartile:                  69.0 
Maximum:                     90.0 
Max possible:                100.0 
Distribution: 
  0.0  -  5.0:                0 
  5.0  - 10.0:                0 
10.0  - 15.0:                0 
15.0  - 20.0:                1   * 
20.0  - 25.0:                1   * 
25.0  - 30.0:                0 
30.0  - 35.0:                3   *** 
35.0  - 40.0:                2   ** 
40.0  - 45.0:                5   ***** 
45.0  - 50.0:               14   ************* 
50.0  - 55.0:               12   *********** 
55.0  - 60.0:               16   *************** 
60.0  - 65.0:               10   ********** 
65.0  - 70.0:               22   ******************** 
70.0  - 75.0:               11   ********** 
75.0  - 80.0:               10   ********** 
80.0  - 85.0:                3   *** 
85.0  - 90.0:                0 
90.0  - 95.0:                1   * 



II. Introduction to Bayes Nets 

Structure of Bayes Nets 
• The structure of a network contains the essential information about the 

conditional independence of the random variables.  
• There are many reoccurring structures that capture common assumptions.  

o Naïve Bayes Model 

 
o Noisy Or Model 
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o Hidden Markov Model 

 
• These models are very important in a branch of AI known as Statistical Machine 

Learning where we try to learn their parameters from observations of real-world 
phenomenon we assume follow a given model. 

o Inconsistencies between the exact model are often secondary to the effects 
captured in the structure of the model. 

o Independence assumptions often don’t hold in the real world, but the 
models still perform well due to the approximate independence exhibited. 
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Foundations 
• Conditional Independence – implies that two variables X,Y are independent 

given variable Z:  
( ) ( ) ( ) ( ) ( ), | | | | , |P X Y Z P X Z P Y Z P X Y Z P X Z= =  

• Bayes’ Rule – application of product rule that allows diagnostic beliefs to be 
derived from casual beliefs: 
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DRUNK DRIVING EXAMPLE  

 
• Naïve Bayes Model – a single cause Y directly influences a number of events Xi 

that are all conditionally independent given the cause: 
( ) ( ) ( )1 2, , , , |n i

i

P Y X X X P Y P X Y= ∏…  

o Often works in situations where conditional independence does not hold. 
o SPAM FILETER 

 
Chain Rule of Probability Theory – In general, 
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Graphical Model – represents the joint probability distribution over a set of random 

variables via the independence relationships between those variables, thus 
concisely encapsulating a family of probability of distributions that respect those 
independence assumptions. 

� Nodes – correspond in a 1-1 relationship with the variables in the 
distribution. 

� Edges – represent dependence between a pair of random variables.  The 
interpretation of this dependence depends on whether or not the graph is directed.



Directed Graphical Models – A Directed Acyclic Graph that represents the joint 
probability over a set of random variables.  The directed structure can be interpreted as 
causality in constructing the models, although some philosophical thought brings this 
interpretation into dispute.  Directed Graphical Models have a structure that represents 
the conditional independence assumptions made in the model. 
 
In a DAGM, the joint probability distribution can be defined as  
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where iπ  is the set of parent nodes of the node Xi.   

 
PROOF:  since it’s a DAG, we can do a constructive proof over the 
topological ordering using the chain rule. 

topological ordering – an ordering I of the variables in a DAG such 
that all ancestors of node i appear before i in the ordering. 

For a DAG, we can always order the nodes topologically; without loss of 
generality assume the following is topological: 1 2, , , nX X X…  

By the chain rule:  ( ) ( )1 2 1 2 1
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But, for any ( )1 2 1| , , ,i ip X X X X −… , we are conditioning on all of iX ’s 

ancestors, which is equivalent to only conditioning on it’s parents. 
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� Variables missing in the local conditional probability functions given by the chain 
rule over a topological ordering of the variables correspond exactly to the missing 
edges in the underlying graph.  Thus, in defining the local functions of a variable, 
one is defining the probability of that variable conditioned on its parents. 

� Let ai
 be the ancestors of node i.  The following is true of any DAG: 

\ |
i i ii aX X Xπ π�  

That is, given the parents of a node, that node is independent of all earlier nodes 
in a topological ordering.  More generally, it can be shown that given the parents 
of a node, that node is independent of all nodes not connected to its descendant 
nodes in the DAG. 

� Conditional Independence corresponds to the notion of d-separation in a directed 
graph.  Slightly different than what you are accustomed to in graph separability. 

� A node is conditionally independent of all other nodes in network given its 
Markov Blanket (parents, children, and children’s parents). 

 



d-separation – two nodes X and Y in a directed graph are d-separated if every path 
between X and Y is blocked. 

� A path between X and Y is blocked if it has any of the following 3 cases 
for any 3 nodes along the path. 

• head-to-tail with intermediary observed: |A B C�  

• tail-to-tail with intermediary observed: |A B C�  

• head to head with neither the intermediary nor any of its 
descendants observed: |A B ∅�   

 
 
 
Bayes Ball Algorithm – an algorithm for determining reachability under a particular 

definition of separation.  In particular, it determines if there exists a path from set 
XA to set XB given that the XC are “specified.” 

1. Place a ball in all nodes of XA. 
2. For each ball in the graph, explore each direct path the ball could use to 

move through some neighboring node; this includes return paths where a 
node serves as both origin and destination.  If the path is valid according 
to the rules of separation, place a ball at the destination. 

3. Upon termination, if a ball is in a member of XB, the set is reachable; 
return true.  Otherwise return false. 

 
Probabilistic Inference – the computation of ( )|F EP X X  for a graph ( ),G ν ε=  

where ,F E ν⊆  index sets such that F E∩ = ∅ ; disjoint. 
o query nodes:  XF; we want to obtain the conditional probability of these. 
o evidence nodes: variables begin conditioned on, XE 
o remaining nodes: XR where ( )\R F Eν= ∪ .  Must be marginalized! 
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o Notes:  
� Using the distributive law, factors irrelevant to a summation can be 

brought outside of it.  By associative law, the order of sums can 
also be swapped. 

� Each summation introduces a new factor that has the marginalized 
variable removed but incorporates all other variables used in that 
product.   

� Determining the optimal ordering of sums that minimizes size of 
intermediate terms is, in general, NP-hard. 
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• Conditioning – the act of basing the probability of the query nodes on specific 
values of the evidence nodes. 

o evidence potential ( ),i ix xδ  - potential that is 1 if i ix x= ; 0 otherwise: 

Kronecker delta function. 
o evidence potentials transform evaluations into sums:  
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DO BAYES NET EXAMPLE 


