Session 8

I. Announcements [5 minutes]

- **Feedback**: *I'd like to get feedback from everybody in section on how I can improve sections: 3 things you like, 3 things you dislike.*
 - I've sent out a link to a *Remailer* you can send email to me from anonymously. Also the link is posted on my webpage.
 - I know you're busy with Sudoku's, train tracks, and so forth, but take 10 minutes and send me feedback it'll make the course better for you and me.

II. Test Recap... briefly [10-20 minutes]

- How did the test go?
- What questions did you have the most problems with?

III. Introduction to Probability

- Agents almost never have access to all of their environment's information.
 - This qualification problem is due to 3 things
 - 1. Laziness too much work to explore all possibilities
 - 2. Incomplete Theory
 - 3. Practical Limitations not all tests can be performed
 - Must be able to derive a plan that will work most of the time.
 - In uncertain environments, the rational decision depends on
 - 1. The relative importance of various goals
 - 2. The likelihood and degree of achievement of each goal
 - Agent's knowledge provides a degree of belief \rightarrow Probability Theory
 - Probability Theory provides the degree to which an agent believes a statement given all plausible alternative situations that are indistinguishable from the current situation.
 - Probability Theory has the same ontological commitment as logic
 - Facts either hold or do not hold in the world
 - o Probabilities depend on the evidence (precepts) the agent has acquired.
- Agents must have preferences towards the outcomes of different plans.
 - Utility Theory Theory of preference based on an object's utility.
 - Preference indicates that different agents might have different goals so while goals might seem misguided, they are not necessarily irrational.
 - **Decision Theory** Combination of Probability and Utility Theory.
 - Principle of Maximum Expected Utility An agent is rational iff it chooses the action that yields the highest expected utility (averaged over all outcomes).
- **Belief State** a representation of probabilities of all possible actual states of the world.

Probability Theory

- Language of Probability ascribes degrees of belief to propositions.
 - Random Variable refers to part of the world with initial unknown status
 - o Domain the values a random variable can take on.
 - Boolean true/false
 - Discrete countable, mutually exclusive, and exhaustive.
 - Continuous uncountable
 - **Atomic Event** a specific complete specification of the world about which the agent is uncertain.
 - The set of atomic events is mutually exclusive and exhaustive → forms a partition
 - Any atomic event entails true/false for every proposition.
 - Any proposition is equivalent to the disjunction of all atomic events that entail the proposition as true.
- **Prior Probability P**(**x**) the degree of belief of proposition **x** in the absence of any evidence about other propositions.
 - **Probability Distribution**, P(X) the vector of probabilities ascribed to each of the possible states of proposition X.
 - Joint Probability Distribution, $P(X_1, X_2, ..., X_n)$ the probabilities of all combinations of values of variables $X_1, X_2, ..., X_n$.
 - **Full Joint Probability Distribution** includes the complete set of variables for the environment.
 - **Probability Density Function**, p(x)dx The probability of a continuous variable on the interval [x,x+dx] in the limit as $dx \rightarrow 0$.
- **Conditional Probability P**(**x**|**y**) the degree of belief of proposition x given the evidence y.
- **Product Rule**: P(X,Y) = P(X | Y)P(Y)
- Kolmogrov's Axioms
 - 1. All probabilities are between 0 and 1:

 $0 \le P(a) \le 1$

2. True propositions have probability 1; false propositions have 0:

$$P(true) = 1$$
 $P(false) = 0$

3. Probability of a disjunction is given by

$$P(a \lor b) = P(a) + P(b) - P(a \land b)$$

- Using these Axioms we can derive other important rules:
 - Let a discrete variable X have a domain $\{x_1, x_2, ..., x_n\}$ or χ :

$$\sum_{i=1}^{n} P(X = x_i) = 1 \quad \text{or} \quad \int_{\mathcal{X}} P(x) dx = 1$$

• The probability of a proposition is equal to the sum of the probabilities in which it holds; the set e(a) for proposition a.

$$P(a) = \sum_{e_i \in \mathbf{e}(a)} P(e_i)$$

- In probability, statements do not refer directly to the world, but rather to an agent's belief about the world, so why can't agent's beliefs violate the probability axioms?
 - **de Finetti Theorem** If Agent 1 expresses a set of degrees of belief that violate Kolmogorov's Axioms, then there is a combination of bets Agent 2 can place that guarantees that Agent 1 will lose money every time.
 - Decision making is an unavoidable process (not making a decision is a decision).
- Probability Philosophy (Briefly)
 - **Frequentist** probabilities are results of repeated experiments.
 - **Objectivist** probabilities come from a propensity of objects to act in a certain way.
 - **Subjectivist** probabilities are a way of characterizing beliefs.
 - **Principle of Indifference** Propositions that are syntactically 'symmetric' w.r.t. evidence should be given equal probability.
 - **Inductive Logic** a logic capable of computing the correct probability for any proposition from any collection of observations. Unclear if it exists.

Probabilistic Inference – computation of posterior probability of query proposition from observed evidence.

• **Marginalization** (**Conditioning**) – variables other than the query variable are summed out in order to obtain the probability of the query variable:

joint:
$$P(Y) = \sum_{z} P(Y, z)$$

conditional: $P(Y) = \sum_{z} P(Y | z) P(z)$

- **Normalization** introduction of constant α that normalizes the distribution to 1 instead of explicitly computing the constant probabilities that that do not depend on the variable being calculated
- Combinatorial Explosion Full Joint Table is size O(2ⁿ) and requires O(2ⁿ) time to be processed.

(Marginal) Independence – variables independent of each other can be factored:

$$P(X,Y) = P(X)P(Y) \qquad P(X | Y) = P(X)$$

• If a complete set of variables can be divided into independent subsets, then the full joint distribution can be factored into separated joint distributions on those subsets.

Bayes' Rule – application of product rule that allows diagnostic beliefs to be derived from casual beliefs:

$$P(Y | X) = \frac{P(X | Y)P(Y)}{P(X)} \qquad P(Y | X, e) = \frac{P(X | Y, e)P(Y | e)}{P(X | e)}$$

- Diagnostic knowledge is often more fragile than casual knowledge → direct casual (model-based) knowledge provides robustness needed for probabilistic systems to function in the real world.
- Conditional Independence implies that two variables X,Y are independent given variable Z:

$$P(X,Y|Z) = P(X|Z)P(Y|Z) \qquad P(X|Y,Z) = P(X|Z)$$

- Given n symptoms that are conditionally independent given Z, the size of the representation grows as O(n) instead of O(2ⁿ).
 - Allows probabilistic systems to scale up.
 - Conditional independence assertions are more common than marginal independence assertions.
- Naïve Bayes Model a single cause Y directly influences a number of events X_i that are all conditionally independent given the cause:

$$P(Y, X_1, X_2, \dots, X_n) = P(Y) \prod_i P(X_i | Y)$$

• Often works in situations where conditional independence does not hold.