
Session 5

I. Announcements [5 minutes]
• Solutions to Assignment 0 are posted on the class web-page.
• Assignment 2 is due October 6-th; that’s Next Thursday.

o You are allowed to work in pairs; but not required. Those who work alone
will not receive special treatment or preferential treatment.

o Who does not have a partner that would like to work in a group.

II. Adversarial Search [15 minutes]
• Adversarial search is a mixture of game theory and classic search; a special case

of both.
o We’ve already talked about search– now we use to find optimal strategies!
o Game Theory – the formal process of decision making in competitive

environments. This area of study seeks to identify the optimal strategy for
players by assuming opponents will play optimally.

� Prisoner’s Dilemma (Name building exercise) – John and Sue are
arrested for theft (1 year in prison). The police only have
sufficient evidence to convict them with a minor crime of
trespassing (1 week in jail). Separately, the police offer John and
Sue a deal to get no prison time if they confess and implicate the
other prisoner of conspiracy (2 years in jail). What should John
and Sue do optimally?

� Paper Rock Scissors potential strategies (which is best?):
• Always play Rock.
• Play Rock ½ the time and Paper ½ the time.
• Play Rock 1/3, Paper 1/3, and Scissors 1/3.

• The games we consider are zero-sum, turn-taking, deterministic, 2-player games
of perfect information.

o game tree – a representation that represents all legal sequences of
decisions.

� root – the initial state of the game.
� (internal) nodes – represents decision made by current players.
� edges – legal choices for a given decision in the tree.
� terminal node – an ending of the game giving a utility to each

player.
• optimal strategy – a contingent strategy that leads to an outcome at least as good

as any other strategy by assuming the opponent is infallible.

• Stopping search prematurely – time limits prevent full exploration of the tree.
o evaluation function – a “heuristic” for accessing the utility of a

nonterminal game state; an estimate of the expected value of a state.
� features – elements of the state that indicate its strength.

o quiescent state - unlikely to have major changes in the near future.
o horizon effect – an unavoidable damaging move looms on the horizon.
o singular extensions – a move that is “clearly better” than others.

Games of Chance with imperfect information

• averaging over clairvoyancy – the strategy of computing optimal moves by
averaging over possibilities for the unseen variables.

o This strategy is flawed as it assumes all future uncertainty will have
disappeared by the time the future is reached.

o Thus, the strategy never makes moves that seek to reveal information.
• belief states – games states are replaced by possible states along with their

corresponding probabilities.
• In games of imperfect information, it’s best to reveal as little as possible, often by

acting unpredictably.

III. AIMA [30 minutes]
• The first real project is due soon and you need to be able to use AIMA in order to

effectively use your time.
o Hopefully, everybody has already started on their projects and you have

questions prepared. For everybody else, you need to start on your project
immediately.

• Track considerations
o Weakly connected components and multiple components using 1 grid.
o State-space of edges – MxNx4 matrix of connections.
o etc.

• Large-scale LISP
o Top-Down and Bottom-Up Programming

• In LISP we don’t just do top-down programming, we also do
bottom-up –building the compiler up to our program.

• While we won’t be writing huge extensions to the compiler in this
class, we can

o Rapid Prototyping
• Write a specification for a function
• Write the function

• Implement dependent functions with stubs to be done upon
completion of this program.

• Test the functions individually – do not proceed until each
function works independently; debugging an entire project at once
in LISP is a painstaking.

• After building and testing your functions, integrate them by
implementing stubs in the same manner. Continue until entire
program is implemented and correct.

• Questions
• Group Work

