
Agent
E
n
v
i
r
o
n
m
e
n
t

Critic

Learning
element

Problem
generator

Actuators

Sensors

learning agent

Performance
element

changes

knowledge

learning
goals

feedback

performance
standard

Session 3

I. Questions (Homework/LISP/Class)

AIMA
• What is the AIMA library.
• How can you use it

II. Issues Not In Class

Learning – the process of modification of each
component of an agent to make the components
agree closer with the available feedback thereby
improving the agent’s performance.

• learning element – responsible for
making improvements

• performance element – responsible for
selecting external actions… the agent
being modified.

• critic – provides feedback on the agent’s
performance and suggests improvements.

o performance standard – a fixed
measure of agent’s performance.

� distinguishes the reward in the percept by providing direct
feedback on quality of agent’s performance.

• problem generator – suggests actions that will lead to exploration.

Bidirectional Search – simultaneous searches from the initial state forward and
from the goal state backwards that stop when the 2 searches meet. Encouraged by the
fact that / 2 / 2d d db b b+ ≪

• complete & optimal (with uniform step costs) if both algorithms are BFS.
• Checking a node for membership in the other search tree can be done in constant

time via a hash table, but requires that 1 search tree be in memory.

o Time-complexity: ()/ 2dO b Space-complexity: ()/ 2dO b

• Bidirectional search requires that the predecessors of a node be efficiently
computable:

o Easy when actions are reversible. Otherwise…
• To deal with several (explicitly listed) goal states, we make them all have a

successor of a single dummy goal state.

III. N-QUEENS

Russell’s Code

What is N-queens?
• Suppose we have N queens on a chess board of N N× squares.

o Queens are allowed to move in any straight vertical, horizontal, or
diagonal line indefinitely across the board to capture another piece.

o We want to place N of them on the board so that no queens can be
captured in a single move.

• What is the problem description (PEAS)? Okay, maybe this problem is a bit
simple for the rigors of PEAS, but it’s a good habit to always write out your
problem description first.

o Environment � Hmmm… the chess board and the queens.
o Actions � Placing the queens.
o Sensors � Rule checks that ensure no queens are in danger.
o Performance Measure � Number of queens that can be captured in one

move.
• How do we solve the problem?

o Work problems for N=3,4,5… Below is a solution for N = 8*

* The following image was taken from http://www.eudoxus.com/mp9609f1.gif

All Unique Solutions to the 8-Queens Problem†

Sol.Nbr.
Row

1
Row

2
Row

3
Row

4
Row

5
Row

6
Row

7
Row

8

1 1 5 8 6 3 7 2 4

2 1 6 8 3 7 4 2 5

3 2 4 6 8 3 1 7 5

4 2 5 7 1 3 8 6 4

5 2 5 7 4 1 8 6 3

6 2 6 1 7 4 8 3 5

7 2 6 8 3 1 4 7 5

8 2 7 3 6 8 5 1 4

9 2 7 5 8 1 4 6 3

10 3 5 2 8 1 7 4 6

11 3 5 8 4 1 7 2 6

12 3 6 2 5 8 1 7 4

† Table taken from http://www.durangobill.com/N_Queens.html

Uninformed Strategies ‡

• Which uninformed strategy would be ideal for N-Queens?

o Breadth-First Search – A bad idea for this problem. We are guaranteed
to expand all nodes of depth less than N nodes. We’ll never reach any
goals until N-th level.

o Uniform Cost Search – Not worth mentioning… no costs on our edges.
o Depth-Limited Search – Ideal for this problem. ALL GOALS are at

depth N so we can halt search there! Moreover Goals are Dense.
o Bidirectional – Problem � formulating a goal state is hard in this case.

If you knew the goal state, you’ve already solved the problem!
• The states are cumulative (encapsulating all previous states) since

we need to know the entire path to check whether we’re in a goal.
• However, we could have a global state and specify from both

directions. BUT this is equivalent to any other ordering of piece
placement – The placements are COMMUTATIVE.

In-depth look at problem
• It might be ridiculous to place the columns (rows) in order from left to right (top

to bottom). What if other orders of placement were more efficient?
o Not so bad actually. If we always were going in a left to right placement

order, we should continue to do so.
o The columns with the most constraints on their values are the leftmost

since eventually diagonals run off the board.

‡ Image taken from http://maven.smith.edu/~thiebaut/transputer/chapter9/chap9-4.html

• What are the simplest facts we can glean from the game?
o Every queen must have it’s own column… but every queen must have it’s

own row as well. If we think about this for a second, this means that every
feasible N-queens solution must be a permutation of the list: 1,2, ,N… .

� A permutation of a list is another list with the same elements in a
different order!

e.g. N=4 2,4,1,3aπ =

o Now to incorporate a diagonal constraint. This can be formulated

mathematically as () ()s t s t t sπ π∀ < − ≠ − .

o Thus we have a way to write this problem mathematically; it must be a
permutation that obeys the above constraint.

A* Search
• First a little book keeping about yesterdays lecture.
• Consistent (Monotonic) Heuristic – h(n) is not more than the cost through n to

n’ plus h(n’). Thus, a general triangle inequality:

() () (), , ' 'h n c n a n h n≤ +

• Can A* do the job efficiently?
o Heuristic Functions (In the Incremental Formulation).

� Choosing a column to place. As discussed above, choosing a
column to place is simple. Leftmost is probably most constrained.

� Choosing a value for the column. Probably want a value that limits
the fewest other columns.

• This fails! All values have the same limitations. If we
move on diagonal off the board we bring another one on.

Incremental vs Complete Formulation
• Which formulation is most convenient for the N-queens problem – incremental or

complete.
o incremental formulation – variables are assigned one at a time such that

the assignment remains consistent.
• Allows us to simply start with an empty board and add queens one

column at a time – similar to the human approach.
• Leads to a lot of backtracking (we come to final columns and

realize there are no legal placements).
o complete-state formulation – all variables are assigned initially and

changed incrementally in attempts to make the assignment consistent.
• valid since the path by which a solution is reached is irrelevant.
• NO BACKTRACKING

• When we have illegal queens, we simply move a single
queen to remove possible captures.

o Why do some problems fit well into incremental formulations and others
into complete formulations?

A*-Incremental N-Queens
• What are the possible moves in this formulation?

o Move a queen in its column?
o Swap a pair of queens across columns!!!

• Now what are good heuristic function?
o Number of Queens in Conflict � overestimates.

Local Search Solutions to N-Queens
• Simulated Annealing – why?
• Genetic Algorithm

CSP Solutions
TBD next time

Solution Density

How Common are the N-queens solutions? The following table came from
http://www.durangobill.com/N_Queens.html and shows the number of solutions (and
unique solutions) along with their probabilities. These probabilities are “inflated” in
that I assumed the queens each had to be in separate rows or columns (N! such
configurations) whereas, there are far more dumb solutions (N2 choose N ~ O(N2N)).

Probability of Probability of
Order
("N")

Ordinary Queens Total
Solutions

Ordinary Queens
Unique Solutions Total Solutions

Unique
Solutions

1 1 1 1 1
2 0 0 0 0
3 0 0 0 0
4 2 1 0.083333333 0.041666667
5 10 2 0.083333333 0.016666667
6 4 1 0.005555556 0.001388889
7 40 6 0.007936508 0.001190476
8 92 12 0.002281746 0.000297619
9 352 46 0.000970018 0.000126764

10 724 92 0.000199515 2.53527E-05
11 2,680 341 6.71397E-05 8.54277E-06
12 14,200 1,787 2.9645E-05 3.73068E-06
13 73,712 9,233 1.18374E-05 1.48273E-06
14 365,596 45,752 4.19366E-06 5.2481E-07
15 2,279,184 285,053 1.74293E-06 2.17985E-07
16 14,772,512 1,846,955 7.06049E-07 8.82748E-08
17 95,815,104 11,977,939 2.6938E-07 3.36755E-08
18 666,090,624 83,263,591 1.04038E-07 1.30051E-08
19 4,968,057,848 621,012,754 4.08406E-08 5.10512E-09
20 39,029,188,884 4,878,666,808 1.60422E-08 2.00529E-09
21 314,666,222,712 39,333,324,973 6.15894E-09 7.69869E-10
22 2,691,008,701,644 336,376,244,042 2.39413E-09 2.99267E-10
23 24,233,937,684,440 3,029,242,658,210 9.3741E-10 1.17176E-10
24 227,514,171,973,736 ? 3.66693E-10
25 2,207,893,435,808,350 ? 1.42342E-10

Probability of a N-queens Configuration being a Sol n

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

N

P
ro

ba
bi

lit
y

Total Solns

Unique Solns

How easy are solutions?

It turns out, for big N, solutions to the N-queens no longer look like intricate puzzles with
clever tricks – they look like the simplest lines we could think of (Below is a solution for
N=46 produced by a Java applet: http://www.apl.jhu.edu/~hall/NQueens.html).

Russell’s Code for N-Queens
;;; -*- Mode: Lisp; Syntax: Common-Lisp; -*-

;;; n-queens as a search problem.
;;; We give both an incremental formulation [2e p 66]
;;; and a complete-state formulation [2e p 110-111].
;;; We also provide the methods required for applying
;;; genetic algorithms to the complete-state formulation.

;;;; Incremental formulation: add one queen at a time, avoiding illegal choices.

(defstruct (nqueens-incremental-problem
 (:include problem) (:constructor create-nqueens-incremental-problem))
 n ;;; the number of queens (n x n board)
)

(defun make-nqueens-incremental-problem (&key (n 8))
 "Returns an nqueens problem instance with an empty board. In general,
 a state is an n-element vector of queen positions, one per column."
 (create-nqueens-incremental-problem
 :n n :initial-state (make-sequence 'vector n :initial-element nil)))

(defmethod copy-state ((state vector)) (copy-seq state))

(defmethod goal-test ((problem nqueens-incremental-problem) state)
 "Return true if all queens have been placed, i.e., last queen is non-nil."
 (elt state (1- (nqueens-incremental-problem-n problem))))

(defmethod actions ((problem nqueens-incremental-problem) state)
 "Generate the possible moves from an nqueens-incremental state.
 A move is simply the row position of the queen in the next column."
 (let ((n (length state))
 (next-col (position nil state))
 (actions nil))
 ;;; For each possible square, check if attacked by previously placed queens
 (loop for row from 0 to (1- n) do
 (unless (some #'(lambda (col)
 (let ((q (elt state col)))
 (or (= q row) (= (- next-col col) (abs (- q row))))))
 (iota next-col))
 (push row actions)))
 actions))

(defmethod result ((problem nqueens-incremental-problem) action state)
 (let ((outcome (copy-state state)))
 (setf (elt outcome (position nil state)) action)
 outcome))

(defmethod h-cost ((problem nqueens-incremental-problem) state)
 "Number of unfilled columns."
 (let ((next-col (position nil state)))
 (if next-col (- (nqueens-incremental-problem-n problem) next-col) 0)))

(defun print-nqueens-state (state)
 "Print out nqueens board state."
 (let ((n (length state)))
 (loop for j from (1- n) downto 0 do
 (format t "~%")
 (loop for i from 0 to (1- n) do (format t (if (= (elt state i) j) "Q " ". "))))))

;;;; Complete-state formulation: start with all queens on
;;;; the board, pick any queen and move it in its column.

(defstruct (nqueens-complete-problem
 (:include problem) (:constructor create-nqueens-complete-problem))
 n ;;; the number of queens (n x n board)
)

(defun make-nqueens-complete-problem (&key (n 8))
 "Returns an nqueens problem instance with all n queens placed
 randomly, one per column."
 (create-nqueens-complete-problem
 :n n :initial-state (random-nqueens-complete-state n)))

(defmethod goal-test ((problem nqueens-complete-problem) state)
 (zerop (h-cost problem state)))

(defmethod actions ((problem nqueens-complete-problem) state)
 "Generate the possible moves from a complete nqueens state.
 A move is simply the column and the new row for that queen."
 (let ((n (length state))
 (actions nil))
 ;;; For each column, generate all other rows but the current one
 (loop for col from 0 to (1- n) do
 (let ((q (elt state col)))
 (loop for row from 0 to (1- n) do
 (unless (= row q) (push (list col row) actions)))))
 actions))

(defmethod result ((problem nqueens-complete-problem) action state)
 "Return a new state with the specified queen moved to the specified square."
 (let ((outcome (copy-state state)))
 (setf (elt outcome (first action)) (second action))
 outcome))

(defmethod h-cost ((problem nqueens-complete-problem) state)
 "Number of pairs of queens attacking each other."
 (let ((n (length state))
 (sum 0))
 (loop for i from 0 to (- n 2) do
 (loop for j from (1+ i) to (- n 1) do
 (let ((delta (- (aref state i) (aref state j))))
 (when (or (= delta 0) (= (abs delta) (- j i)))
 (incf sum)))))
 sum))

(defun random-nqueens-complete-state (n)
 "Return a random complete state with n queens, one per column."
 (let ((state (make-sequence 'vector n)))
 (loop for i from 0 to (1- n) do
 (setf (elt state i) (random n)))
 state))

;;;; Methods for genetic algorithms applied to complete-state nqueens

(defmethod GA-encode ((problem nqueens-complete-problem) state)
 "Encode state as a sequence - already in that form."
 state)

(defmethod GA-decode ((problem nqueens-complete-problem) individual)
 "Decode state from sequence - already in that form."
 individual)

(defmethod GA-alphabet ((problem nqueens-complete-problem))
 "Return the list of characters used in sequence form - 0 through n-1."
 (iota (nqueens-complete-problem-n problem)))

(defmethod fitness ((problem nqueens-complete-problem) individual)
 "Return the number of non-attacks between queens."
 (let ((n (length individual)))
 (- (/ (* n (- n 1)) 2) (h-cost problem individual))))

Appendix: Problem

;;; -*- Mode: Lisp; Syntax: Common-Lisp; -*- File: problems.lisp

;;;; Defining Problems

(defstruct problem
 "A problem is defined by the initial state, successor function,
 goal test, and path cost (defined, in turn, by step cost). [2e p 62]"
 (initial-state (required)) ; A state in the domain
)

;;; When we define a new subtype of problem, we need to specify eeither
;;; 1) a SUCCESSOR-FN method; or
;;; 2) ACTIONS and RESULT methods.
;;; If one or the other is not done, an infinite loop will result!
;;; We may also need to define methods for GOAL-TEST, H-COST, and
;;; STEP-COST, but they have default methods which may be appropriate.
;;; In addition, there is a technicality: states and actions require
;;; hash keys, although a default is provided that often works (see below).

(defmethod successor-fn ((problem problem) state)
 "Return a list of (action . state) pairs that can be reached from this state."
 (mapcar #'(lambda (action) (cons action (result problem action state)))
 (actions problem state)))

(defmethod actions ((problem problem) state)
 "Return an list of actions possible in this state;
 use this default method only if successor-fn is independently defined!"
 (mapcar #'car (successor-fn problem state)))

(defmethod result ((problem problem) action state)
 "Return the state resulting from executing action in state;
 use this default method only if successor-fn is independently defined!"
 (cdr (assoc action (successor-fn problem state)
 :test #'(lambda (a1 a2)
 (equalp (action-hash-key problem a1)
 (action-hash-key problem a2))))))

(defmethod sequence-result ((problem problem) action-sequence state)
 "Return the state resulting from executing action-sequence in state.
 Useful for checking that a proposed solution sequence achieves the goal."
 (if (null action-sequence)
 state
 (sequence-result problem (rest action-sequence)
 (result problem (first action-sequence) state))))

(defmethod successor-states ((problem problem) state)
 "Return a list of states that can be reached from this state.
 This ignores actions, and is appropriate only for offline local search."
 (mapcar #'(lambda (action) (result problem action state))
 (actions problem state)))

(defmethod goal-test ((problem problem) state)
 "Return true or false: is this state a goal state?"
 (declare-ignore state)
 (required))

(defmethod step-cost ((problem problem) state1 action state2)
 "The cost of going from state1 to state2 by taking action.
 This default method counts 1 for every action. Provide a method for this if
 your subtype of problem has a different idea of the cost of a step."
 (declare-ignore state1 action state2)
 1)

(defun path-cost (problem action-sequence &optional (state (problem-initial-state problem)) (cost 0))
 "Return the sum of step costs along the given action sequence."
 (if (null action-sequence)
 cost
 (let ((next-state (result problem (first action-sequence) state)))
 (path-cost problem (rest action-sequence) next-state
 (+ cost (step-cost problem state (first action-sequence) next-state))))))

(defmethod h-cost ((problem problem) state)
 "The estimated cost from state to a goal for this problem.
 If you don't overestimate, then A* will always find optimal solutions.
 The default estimate is always 0, which certainly doesn't overestimate."
 (declare (ignore state))
 0)

;;; The ability to generate a single random successor,
;;; rather than all successors at once, is important for
;;; local search algorithms in domains with large state
;;; representations and/or many successors.

(defmethod random-successor ((problem problem) state)
 "Return (a . s) for a random legal action a and outcome s."
 (let ((action (random-action problem state)))
 (cons action (result problem action state))))

(defmethod random-successor-state ((problem problem) state)
 "Return the outcome s of a random legal action."
 (result problem (random-action problem state) state))

(defmethod random-action ((problem problem) state)
 "Return a random legal action in state; typically this
 method must be defined specially for each domain."
 (random-element (actions problem state)))

;;; Hash keys for states and actions.
;;; States are hashed in the graph search algorithms; both states and actions
;;; are hashed in the enumerated-problem class. Two states or actions represented
;;; by complex data structures may not be EQUALP if the representation
;;; is not canonical, so we must define hash keys for them.
;;; For example, moves in backgammon can be written in any permutation
;;; and still be the "same" move. However, this situation is rare.
;;; In most cases, the state or action representation serves as its own hash key.

(defmethod state-hash-key ((problem problem) state)
 "Key to be used to hash the state; identical states must have EQUAL keys.
 Default is the state itself, i.e., assume a canonical representation."
 state)

(defmethod action-hash-key ((problem problem) action)
 "Key to be used to hash actions; identical actions must have EQUAL keys."
 action)

