Session 3

I. Questions (Homework/LISP/Class)

AIMA

- What is the AIMA library.
- How can you use it

II. Issues Not In Class

Learning – the process of modification of each component of an agent to make the components agree closer with the available feedback thereby improving the agent's performance.

- **learning element** responsible for making improvements
- **performance element** responsible for selecting external actions... the agent being modified.
- **critic** provides feedback on the agent's performance and suggests improvements.
 - **performance standard** a *fixed* measure of agent's performance.

learning agent

- distinguishes the *reward* in the percept by providing direct feedback on quality of agent's performance.
- problem generator suggests actions that will lead to exploration.

Bidirectional Search – simultaneous searches from the initial state forward and from the goal state backwards that stop when the 2 searches meet. Encouraged by the fact that $b^{d/2} + b^{d/2} \ll b^d$

- complete & optimal (with uniform step costs) if both algorithms are BFS.
- Checking a node for membership in the other search tree can be done in constant time via a hash table, but requires that 1 search tree be in memory.

• Time-complexity: $O(b^{d/2})$ Space-complexity: $O(b^{d/2})$

- Bidirectional search requires that the **predecessors** of a node be efficiently computable:
 - Easy when actions are *reversible*. Otherwise...
- To deal with several (explicitly listed) goal states, we make them all have a successor of a single *dummy goal state*.

III. N-QUEENS

Russell's Code

What is N-queens?

- Suppose we have N queens on a chess board of $N \times N$ squares.
 - Queens are allowed to move in any straight vertical, horizontal, or diagonal line indefinitely across the board to capture another piece.
 - We want to place N of them on the board so that no queens can be captured in a single move.
- What is the problem description (PEAS)? Okay, maybe this problem is a bit simple for the rigors of PEAS, but it's a good habit to always write out your problem description first.
 - Environment \rightarrow Hmmm... the chess board and the queens.
 - <u>Actions</u> \rightarrow Placing the queens.
 - <u>Sensors</u> \rightarrow Rule checks that ensure no queens are in danger.
 - <u>Performance</u> Measure \rightarrow Number of queens that can be captured in one move.
- How do we solve the problem?
 - Work problems for N=3,4,5... Below is a solution for N = 8^*

		X					
				X			
							X
			X				
X							
						X	
	X						
					X		

^{*} The following image was taken from <u>http://www.eudoxus.com/mp9609f1.gif</u>

Sol.Nbr.	Row 1	Row 2	Row 3	Row 4	Row 5	Row 6	Row 7	Row 8
1	1	5	8	6	3	7	2	4
2	1	6	8	3	7	4	2	5
3	2	4	6	8	3	1	7	5
4	2	5	7	1	3	8	6	4
5	2	5	7	4	1	8	6	3
6	2	6	1	7	4	8	3	5
7	2	6	8	3	1	4	7	5
8	2	7	3	6	8	5	1	4
9	2	7	5	8	1	4	6	3
10	3	5	2	8	1	7	4	6
11	3	5	8	4	1	7	2	6
12	3	6	2	5	8	1	7	4

All Unique Solutions to the 8-Queens $\textbf{Problem}^{\dagger}$

[†] Table taken from <u>http://www.durangobill.com/N_Queens.html</u>

Uninformed Strategies[‡]

- Which uninformed strategy would be ideal for N-Queens?
 - **Breadth-First Search** A bad idea for this problem. We are guaranteed to expand all nodes of depth less than N nodes. We'll never reach any goals until N-th level.
 - Uniform Cost Search Not worth mentioning... no costs on our edges.
 - **Depth-Limited Search** Ideal for this problem. ALL GOALS are at depth *N* so we can halt search there! Moreover Goals are *Dense*.
 - **Bidirectional Problem** \rightarrow formulating a goal state is hard in this case. If you knew the goal state, you've already solved the problem!
 - The states are cumulative (encapsulating all previous states) since we need to know the entire path to check whether we're in a goal.
 - However, we could have a global state and specify from both directions. BUT this is equivalent to any other ordering of piece placement The placements are COMMUTATIVE.

In-depth look at problem

- It might be ridiculous to place the columns (rows) in order from left to right (top to bottom). What if other orders of placement were more efficient?
 - Not so bad actually. If we always were going in a left to right placement order, we should continue to do so.
 - The columns with the most constraints on their values are the leftmost since eventually diagonals run off the board.

[‡] Image taken from <u>http://maven.smith.edu/~thiebaut/transputer/chapter9/chap9-4.html</u>

- What are the simplest facts we can glean from the game?
 - Every queen must have it's own column... but every queen must have it's own row as well. If we think about this for a second, this means that every feasible N-queens solution must be a permutation of the list: $\langle 1, 2, ..., N \rangle$.
 - A <u>permutation</u> of a list is another list with the same elements in a different order!

e.g. N=4 $\pi_a = \langle 2, 4, 1, 3 \rangle$

- Now to incorporate a <u>diagonal constraint</u>. This can be formulated mathematically as $\forall s < t |\pi(s) \pi(t)| \neq t s$.
- Thus we have a way to write this problem mathematically; it must be a permutation that obeys the above constraint.

A* Search

- First a little book keeping about yesterdays lecture.
- **Consistent (Monotonic) Heuristic** h(n) is not more than the cost through n to n' plus h(n'). Thus, a general triangle inequality:

 $h(n) \leq c(n,a,n') + h(n')$

- Can A* do the job efficiently?
 - Heuristic Functions (In the Incremental Formulation).
 - Choosing a column to place. As discussed above, choosing a column to place is simple. Leftmost is probably *most constrained*.
 - Choosing a value for the column. Probably want a value that *limits the fewest other columns*.
 - This fails! All values have the same limitations. If we move on diagonal off the board we bring another one on.

Incremental vs Complete Formulation

- Which formulation is most convenient for the N-queens problem incremental or complete.
 - <u>incremental formulation</u> variables are assigned one at a time such that the assignment remains consistent.
 - Allows us to simply start with an empty board and add queens one column at a time similar to the human approach.
 - Leads to a lot of backtracking (we come to final columns and realize there are no legal placements).
 - <u>complete-state formulation</u> all variables are assigned initially and changed incrementally in attempts to make the assignment consistent.
 - valid since the path by which a solution is reached is irrelevant.
 - NO BACKTRACKING
 - When we have illegal queens, we simply move a single queen to remove possible captures.
 - Why do some problems fit well into incremental formulations and others into complete formulations?

A*-Incremental N-Queens

- What are the possible moves in this formulation?
 - Move a queen in its column?
 - Swap a pair of queens across columns!!!
- Now what are good heuristic function?
 - Number of Queens in Conflict \rightarrow overestimates.

Local Search Solutions to N-Queens

- Simulated Annealing why?
- Genetic Algorithm

CSP Solutions

TBD next time

Solution Density

How Common are the N-queens solutions? The following table came from <u>http://www.durangobill.com/N_Queens.html</u> and shows the number of solutions (and unique solutions) along with their probabilities. *These probabilities are "inflated" in that I assumed the queens each had to be in separate rows or columns (N! such configurations) whereas, there are far more dumb solutions (N² choose N ~ O(N^{2N})).*

			Probability of	Probability of
Order	Ordinary Queens Total	Ordinary Queens		Unique
("N")	Solutions	Unique Solutions	Total Solutions	Solutions
1	1	1	1	1
2	0	0	0	0
3	0	0	0	0
4	2	1	0.083333333	0.041666667
5	10	2	0.083333333	0.016666667
6	4	1	0.005555556	0.001388889
7	40	6	0.007936508	0.001190476
8	92	12	0.002281746	0.000297619
9	352	46	0.000970018	0.000126764
10	724	92	0.000199515	2.53527E-05
11	2,680	341	6.71397E-05	8.54277E-06
12	14,200	1,787	2.9645E-05	3.73068E-06
13	73,712	9,233	1.18374E-05	1.48273E-06
14	365,596	45,752	4.19366E-06	5.2481E-07
15	2,279,184	285,053	1.74293E-06	2.17985E-07
16	14,772,512	1,846,955	7.06049E-07	8.82748E-08
17	95,815,104	11,977,939	2.6938E-07	3.36755E-08
18	666,090,624	83,263,591	1.04038E-07	1.30051E-08
19	4,968,057,848	621,012,754	4.08406E-08	5.10512E-09
20	39,029,188,884	4,878,666,808	1.60422E-08	2.00529E-09
21	314,666,222,712	39,333,324,973	6.15894E-09	7.69869E-10
22	2,691,008,701,644	336,376,244,042	2.39413E-09	2.99267E-10
23	24,233,937,684,440	3,029,242,658,210	9.3741E-10	1.17176E-10
24	227,514,171,973,736	?	3.66693E-10	
25	2,207,893,435,808,350	?	1.42342E-10	

Probability of a N-queens Configuration being a Soln

How easy are solutions?

It turns out, for big N, solutions to the N-queens no longer look like intricate puzzles with clever tricks – they look like the simplest lines we could think of (Below is a solution for N=46 produced by a Java applet: <u>http://www.apl.jhu.edu/~hall/NQueens.html</u>).

Russell's Code for N-Queens

```
;;; -*- Mode: Lisp; Syntax: Common-Lisp; -*-
```

```
;;; n-queens as a search problem.
```

```
;;; We give both an incremental formulation [2e p 66]
```

```
;;; and a complete-state formulation [2e p 110-111].
;;; We also provide the methods required for applying
```

```
;;; genetic algorithms to the complete-state formulation.
```

,,, genetic argorithms to the complete-state formulation.

;;;; Incremental formulation: add one queen at a time, avoiding illegal choices.

(defstruct (nqueens-incremental-problem

- (:include problem) (:constructor create-nqueens-incremental-problem))
- n ;;; the number of queens (n x n board)

)

(defun make-nqueens-incremental-problem (&key (n 8)) "Returns an nqueens problem instance with an empty board. In general,

a state is an n-element vector of queen positions, one per column."

(create-nqueens-incremental-problem :n n :initial-state (make-sequence 'vector n :initial-element nil)))

(defmethod copy-state ((state vector)) (copy-seq state))

```
(defmethod goal-test ((problem nqueens-incremental-problem) state)
"Return true if all queens have been placed, i.e., last queen is non-nil."
(elt state (1- (nqueens-incremental-problem-n problem))))
```

```
(let ((outcome (copy-state state)))
(setf (elt outcome (position nil state)) action)
```

```
outcome))
```

```
(defmethod h-cost ((problem nqueens-incremental-problem) state)
"Number of unfilled columns."
(let ((next-col (position nil state)))
  (if next-col (- (nqueens-incremental-problem-n problem) next-col 0)))
(defun print-nqueens-state (state)
```

```
"Print out nqueens board state."
(let ((n (length state)))
  (loop for j from (1- n) downto 0 do
    (format t "~%")
    (loop for i from 0 to (1- n) do (format t (if (= (elt state i) j) "Q " ". "))))))
```

;;;; Complete-state formulation: start with all queens on ;;;; the board, pick any queen and move it in its column.

(defstruct (nqueens-complete-problem

```
(:include problem) (:constructor create-nqueens-complete-problem))
```

```
n ;;; the number of queens (n x n board)
```

```
)
```

```
(defun make-nqueens-complete-problem (&key (n 8))
 "Returns an nqueens problem instance with all n queens placed
 randomly, one per column."
 (create-nqueens-complete-problem
 :n n :initial-state (random-nqueens-complete-state n)))
(defmethod goal-test ((problem nqueens-complete-problem) state)
 (zerop (h-cost problem state)))
(defmethod actions ((problem nqueens-complete-problem) state)
 "Generate the possible moves from a complete nqueens state.
 A move is simply the column and the new row for that queen."
 (let ((n (length state))
           (actions nil))
  ;;; For each column, generate all other rows but the current one
  (loop for col from 0 to (1-n) do
   (let ((q (elt state col)))
     (loop for row from 0 to (1-n) do
      (unless (= row q) (push (list col row) actions)))))
  actions))
(defmethod result ((problem nqueens-complete-problem) action state)
  'Return a new state with the specified queen moved to the specified square."
 (let ((outcome (copy-state state)))
  (setf (elt outcome (first action)) (second action))
  outcome))
(defmethod h-cost ((problem nqueens-complete-problem) state)
 "Number of pairs of queens attacking each other."
 (let ((n (length state))
           (sum 0))
  (loop for i from 0 to (- n 2) do
   (loop for j from (1+i) to (-n 1) do
           (let ((delta (- (aref state i) (aref state j))))
           (when (or (= delta 0) (= (abs delta) (- j i)))
            (incf sum)))))
  sum))
(defun random-nqueens-complete-state (n)
 "Return a random complete state with n queens, one per column."
 (let ((state (make-sequence 'vector n)))
  (loop for i from 0 to (1-n) do
    (setf (elt state i) (random n)))
  state))
;;;; Methods for genetic algorithms applied to complete-state nqueens
(defmethod GA-encode ((problem nqueens-complete-problem) state)
 "Encode state as a sequence - already in that form."
 state)
(defmethod GA-decode ((problem nqueens-complete-problem) individual)
 "Decode state from sequence - already in that form."
 individual)
(defmethod GA-alphabet ((problem nqueens-complete-problem))
 "Return the list of characters used in sequence form - 0 through n-1."
 (iota (nqueens-complete-problem-n problem)))
(defmethod fitness ((problem nqueens-complete-problem) individual)
 "Return the number of non-attacks between queens."
 (let ((n (length individual)))
  (- (/ (* n (- n 1)) 2) (h-cost problem individual))))
```

Appendix: Problem

;;; -*- Mode: Lisp; Syntax: Common-Lisp; -*- File: problems.lisp ;;;; Defining Problems (defstruct problem "A problem is defined by the initial state, successor function, goal test, and path cost (defined, in turn, by step cost). [2e p 62]" (initial-state (required)); A state in the domain ;;; When we define a new subtype of problem, we need to specify eeither ;;; 1) a SUCCESSOR-FN method; or ;;; 2) ACTIONS and RESULT methods. ;;; If one or the other is not done, an infinite loop will result! ;;; We may also need to define methods for GOAL-TEST, H-COST, and ;;; STEP-COST, but they have default methods which may be appropriate. ;;; In addition, there is a technicality: states and actions require ;;; hash keys, although a default is provided that often works (see below). (defmethod successor-fn ((problem problem) state) "Return a list of (action . state) pairs that can be reached from this state." (mapcar #'(lambda (action) (cons action (result problem action state))) (actions problem state))) (defmethod actions ((problem problem) state) "Return an list of actions possible in this state; use this default method only if successor-fn is independently defined!" (mapcar #'car (successor-fn problem state))) (defmethod result ((problem problem) action state) "Return the state resulting from executing action in state; use this default method only if successor-fn is independently defined!" (cdr (assoc action (successor-fn problem state) :test #'(lambda (a1 a2) (equalp (action-hash-key problem a1) (action-hash-key problem a2)))))) (defmethod sequence-result ((problem problem) action-sequence state) 'Return the state resulting from executing action-sequence in state. Useful for checking that a proposed solution sequence achieves the goal." (if (null action-sequence) state (sequence-result problem (rest action-sequence) (result problem (first action-sequence) state)))) (defmethod successor-states ((problem problem) state) 'Return a list of states that can be reached from this state. This ignores actions, and is appropriate only for offline local search." (mapcar #'(lambda (action) (result problem action state)) (actions problem state))) (defmethod goal-test ((problem problem) state) "Return true or false: is this state a goal state?" (declare-ignore state) (required)) (defmethod step-cost ((problem problem) state1 action state2) "The cost of going from state1 to state2 by taking action. This default method counts 1 for every action. Provide a method for this if your subtype of problem has a different idea of the cost of a step." (declare-ignore state1 action state2)

1)

(defun path-cost (problem action-sequence & optional (state (problem-initial-state problem)) (cost 0))

"Return the sum of step costs along the given action sequence."

(if (null action-sequence)

cost

(let ((next-state (result problem (first action-sequence) state))) (path-cost problem (rest action-sequence) next-state (+ cost (step-cost problem state (first action-sequence) next-state))))))

(defmethod h-cost ((problem problem) state)

"The estimated cost from state to a goal for this problem.

If you don't overestimate, then A* will always find optimal solutions.

- The default estimate is always 0, which certainly doesn't overestimate." (declare (ignore state))
- (uc)

;;; The ability to generate a single random successor,

;;; rather than all successors at once, is important for

;;; local search algorithms in domains with large state

;;; representations and/or many successors.

(defmethod random-successor ((problem problem) state) "Return (a . s) for a random legal action a and outcome s." (let ((action (random-action problem state))) (cons action (result problem action state))))

(defmethod random-successor-state ((problem problem) state) "Return the outcome s of a random legal action." (result problem (random-action problem state) state))

(defmethod random-action ((problem problem) state) "Return a random legal action in state; typically this method must be defined specially for each domain." (random-element (actions problem state)))

;;; Hash keys for states and actions.

- ;;; States are hashed in the graph search algorithms; both states and actions
- ;;; are hashed in the enumerated-problem class. Two states or actions represented
- ;;; by complex data structures may not be EQUALP if the representation
- ;;; is not canonical, so we must define hash keys for them.
- ;;; For example, moves in backgammon can be written in any permutation
- ;;; and still be the "same" move. However, this situation is rare.
- ;;; In most cases, the state or action representation serves as its own hash key.

(defmethod state-hash-key ((problem problem) state)

"Key to be used to hash the state; identical states must have EQUAL keys. Default is the state itself, i.e., assume a canonical representation." state)

(defmethod action-hash-key ((problem problem) action) "Key to be used to hash actions; identical actions must have EQUAL keys." action)