Session 3

l. Questions (Homework/LISP/Class)

AIMA

* What is the AIMA library.
* How can you use it

Il. Issues Not In Class

Learning - the process of modification of each performance
component of an agent to make the component =
agree closer with the available feedback thereb
improving the agent’s performance.
» learning element — responsible for
making improvements
» performance element — responsible for
selecting external actions... the agent
being modified.
» critic— provides feedback on the agent’
performance and suggests improvement
o0 performance standard — afixed
measure of agent’s performance. learnina aaer
» distinguishes theewardin the percept by providing direct
feedback on quality of agent’s performance.
» problem generator — suggests actions that will lead to exploration.

Learning Performance
elemen elemen

Bidirectional Search - simultaneous searches from the initial state forward and
from the goal state backwards that stop when the 2 searches meet. Encouthged by
fact thatb?’? + b"'? <« b*
» complete& optimal (with uniform step costs) if both algorithms are BFS.
» Checking a node for membership in the other search tree can be done in constant
time via a hash table, but requires that 1 search tree be in memory.

0 Time-complexity:o(b‘“z) Space-complexityo(b‘“z)

» Bidirectional search requires that hreedecessor s of a node be efficiently
computable:
o Easy when actions areversible Otherwise...
» To deal with several (explicitly listed) goal states, we make thehage a
successor of a singtlummy goal state.

[lll. N-QUEENS
Russell's Code

What is N-queens?

* Suppose we have N queens on a chess boaxdxdfl squares.
0 Queens are allowed to move in any straight vertical, horizontal, or
diagonal line indefinitely across the board to capture another piece.
0 We want to place N of them on the board so that no queens can be
captured in a single move.
* What is the problem description (PEAS)? Okay, maybe this problem is a bit

simple for the rigors of PEAS, but it's a good habit to always write out your
problem description first.

o Environment> Hmmm... the chess board and the queens.
o Actions-> Placing the queens.

0 Sensors>» Rule checks that ensure no queens are in danger.
0

PerformancéVleasure> Number of queens that can be captured in one
move.

* How do we solve the problem? .
0 Work problems for N=3,4,5... Below is a solution for N =8

X

X

" The following image was taken frohttp://www.eudoxus.com/mp9609f1.gif

All Unique Solutions to the 8-Queens Problem’

Row Row Row Row|Row|Row | Row | Row

Sol.Nbr. 1 5 3 4 5 6 5 3
1 1 5 8 6 3 7 2 4
2 1 6 8 3 7 4 2 5
3 2 4 6 8 3 1 7 5
4 2 5 7 1 3 8 6 4
5 2 5 7 4 1 8 6 3
6 2 6 1 7 4 8 3 5
7 2 6 8 3 1 4 7 5
8 2 7 3 6 8 5 1 4
9 2 7 5 8 1 4 6 3
10 3 5 2 8 1 7 4 6
11 3 5 8 4 1 7 2 6
12 3 6 2 5 8 1 7 4

" Table taken fronmttp://www.durangobill.com/N_Queens.html

Uninformed Strategies *

\
\FEE
\
\
\

o
¥
:
P
»
hH

I N N

* Which uninformed strategy would be ideal for N-Queens?

0 Breadth-First Search — A bad idea for this problem. We are guaranteed
to expand all nodes of depth less tivanodes. We’'ll never reach any
goals untilN-th level.

0 Uniform Cost Search — Not worth mentioning... no costs on our edges.

0 Depth-Limited Search — Ideal for this problem. ALL GOALS are at
depthN so we can halt search there! Moreover Goal®aree

o Bidirectional —Problem - formulating a goal state is hard in this case.

If you knew the goal state, you've already solved the problem!
* The states are cumulative (encapsulating all previous states) since
we need to know the entire path to check whether we’re in a goal.
* However, we could have a global state and specify from both
directions. BUT this is equivalent to any other ordering of piece
placement — The placements are COMMUTATIVE.

In-depth look at problem

» It might be ridiculous to place the columns (rows) in order from left to right (top
to bottom). What if other orders of placement were more efficient?
o0 Not so bad actually. If we always were going in a left to right placement
order, we should continue to do so.
0 The columns with the most constraints on their values are the leftmost
since eventually diagonals run off the board.

* Image taken frorhttp:/maven.smith.edu/~thiebaut/transputer/ch&@pteap9-4.html

* What are the simplest facts we can glean from the game?
o Every queen must have it's own column... but every queen must have it's
own row as well. If we think about this for a second, this means that every

feasible N-queens solution must be a permutation of the{llst,... ,N>.

» A permutation of a list is another list with the same elementa i
different order!

eg. N=4 7,=(2,413
o Now to incorporate a diagonal constraifthis can be formulated
mathematically as Os<t |rz(s)-7(|# t- <.

o0 Thus we have a way to write this problem matheraHyicit must be a
permutation that obeys the above constraint.

A* Search

» First a little book keeping about yesterdays lextur
* Consistent (Monotonic) Heuristic — h(n) is not more than the cost through n to
n’ plus h(n’). Thus, a general triangle inequality
h(n)< o(na)+ K r)
» Can A* do the job efficiently?
0 Heuristic Functions (In the Incremental Formulation
» Choosing a column to place. As discussed abowmsthg a
column to place is simple. Leftmost is probatplgst constrained
» Choosing a value for the column. Probably warhlae thatimits
the fewest other columns
* This fails! All values have the same limitationwe
move on diagonal off the board we bring anotherame

Incremental vs Complete Formulation

* Which formulation is most convenient for the N-que@roblem — incremental or
complete.
o incremental formulatior variables are assigned one at a time such that
the assignment remains consistent.
» Allows us to simply start with an empty board andd gueens one
column at a time — similar to the human approach.
* Leads to a lot of backtracking (we come to finduoans and
realize there are no legal placements).
o complete-state formulation all variables are assigned initially and
changed incrementally in attempts to make the asggt consistent.
» valid since the path by which a solution is reacisadelevant.
* NO BACKTRACKING
* When we have illegal queens, we simply move a singl
gueen to remove possible captures.
0 Why do some problemsfit well into incremental formulations and others
into compl ete formulations?

A*-Incremental N-Queens

* What are the possible moves in this formulation?
o0 Move a queen in its column?
0 Swap a pair of queens across columns!!!
* Now what are good heuristic function?
o Number of Queens in Conflie» overestimates.

Local Search Solutions to N-Queens

» Simulated Annealing — why?
» Genetic Algorithm

CSP Solutions
TBD next time

Solution Density

How Common are the N-queens solutions? The foligw@able came from

http://www.durangobill.com/N_Queens.htamd shows the number of solutions (and

unique solutions) along with their probabilitieBhese probabilities are “inflated” in
that | assumed the queens each had to be in separass or columns (N! such
configurations) whereas, there are far more dumbtims (N choose N ~ O(RY)).

Probability of

Probability of

Order | Ordinary Queens Total | Ordinary Queens Unique
("N") Solutions Unique Solutions Total Solutions Solutions
1 1 1 1 1
2 0 0 0 0
3 0 0 0 0
4 2 1 0.083333333 0.041666667
5 10 2 0.083333333 0.016666667
6 4 1 0.005555556 0.001388889
7 40 6 0.007936508 0.001190476
8 92 12 0.002281746 0.000297619
9 352 46 0.000970018 0.000126764
10 724 92 0.000199515 2.53527E-05
11 2,680 341 6.71397E-05 8.54277E-06
12 14,200 1,787 2.9645E-05 3.73068E-06
13 73,712 9,233 1.18374E-05 1.48273E-06
14 365,596 45,752 4.19366E-06 5.2481E-07
15 2,279,184 285,053 1.74293E-06 2.17985E-07
16 14,772,512 1,846,955 7.06049E-07 8.82748E-08
17 95,815,104 11,977,939 2.6938E-07 3.36755E-08
18 666,090,624 83,263,591 1.04038E-07 1.30051E-08
19 4,968,057,848 621,012,754 4.08406E-08 5.10512E-09
20 39,029,188,884 4,878,666,808 1.60422E-08 2.00529E-09
21 314,666,222,712 39,333,324,973 6.15894E-09 7.69869E-10
22 2,691,008,701,644 336,376,244,042 2.39413E-09 2.99267E-10
23 24,233,937,684,440 | 3,029,242,658,210 9.3741E-10 1.17176E-10
24 227,514,171,973,736 ? 3.66693E-10
25 | 2,207,893,435,808,350 ? 1.42342E-10

Probability of a N-queens Configuration being a Sol n

1/

0.1 ©

0.01

0.001

0.0001

—&— Total Solns

1E-05
—— Unique Solns

Probability

1E-06

1E-07

1E-08

1E-09

1E-10

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

N

How easy are solutions?

It turns out, for big N, solutions to the N-quee@mslonger look like intricate puzzles with
clever tricks — they look like the simplest lines would think of (Below is a solution for
N=46 produced by a Java applettp://www.apl.jhu.edu/~hall/NQueens.hjml

Russell’'s Code for N-Queens

;i -*- Mode: Lisp; Syntax: Common-Lisp; -*-

;51 N-queens as a search problem.

;1» We give both an incremental formulation [2e6) 6
;;» and a complete-state formulation [2e p 110-111]
;»» We also provide the methods required for apylyi
;1 genetic algorithms to the complete-state foatiah.

;1 Incremental formulation: add one queen atreetiavoiding illegal choices.

(defstruct (nqueens-incremental-problem
(:include problem) (:constructor create-nqueeeremental-problem))
n ;;; the number of queens (n x n board)

)

(defun make-nqueens-incremental-problem (&key jn 8)
"Returns an nqueens problem instance with anyebgard. In general,
a state is an n-element vector of queen positione per column."
(create-nqueens-incremental-problem
:n n initial-state (make-sequence 'vector itiakelement nil)))

(defmethod copy-state ((state vector)) (copy-satept

(defmethod goal-test ((problem nqueens-incremeptathem) state)
"Return true if all queens have been placed,last queen is non-nil."
(elt state (1- (nqueens-incremental-problem-rbierm))))

(defmethod actions ((problem nqueens-incrementahpm) state)
"Generate the possible moves from an nqueensrirental state.
A move is simply the row position of the queeritie next column."
(let ((n (length state))
(next-col (position nil state))
(actions nil))
;;» For each possible square, check if attatlepreviously placed queens
(loop for row from O to (1- n) do
(unless (some #'(lambda (col)
(let ((g (elt state col)))
(or (= q row) (= (- next-col col) (abs (- qw}))))
(iota next-col))
(push row actions)))
actions))

(defmethod result ((problem nqueens-incrementablpro) action state)
(let ((outcome (copy-state state)))
(setf (elt outcome (position nil state)) acjion
outcome))

(defmethod h-cost ((problem nqueens-incrementabpro) state)
"Number of unfilled columns."
(let ((next-col (position nil state)))
(if next-col (- (hqueens-incremental-problemoblem) next-col) 0)))

(defun print-nqueens-state (state)
"Print out nqueens board state."
(let ((n (length state)))
(loop for j from (1- n) downto 0 do
(format t "~%")
(loop for i from 0 to (1- n) do (format t (€ (elt state i) j) "Q " ". "))

;11» Complete-state formulation: start with all gas on
;s the board, pick any queen and move it in dsion.

(defstruct (nqueens-complete-problem
(:include problem) (:constructor create-nqseeomplete-problem))
n ;1» the number of queens (n x nripa

)

(defun make-nqueens-complete-problem (&key (n 8))
"Returns an nqueens problem instance with alleegs placed
randomly, one per column.”
(create-ngueens-complete-problem
:n n :initial-state (random-nqueens-completé¢esty))

(defmethod goal-test ((problem nqueens-completblpno) state)
(zerop (h-cost problem state)))

(defmethod actions ((problem nqueens-complete-pmjpktate)
"Generate the possible moves from a completeemustate.
A move is simply the column and the new rowtfat queen.”
(let ((n (length state))

(actions nil))
;;; For each column, generate all other rowtstie current one
(loop for col from 0 to (1- n) do
(let ((g (elt state col)))
(loop for row from 0 to (1- n) do
(unless (= row q) (push (list col row}ians)))))
actions))

(defmethod result ((problem nqueens-complete-propkection state)
"Return a new state with the specified queen midvehe specified square.”
(let ((outcome (copy-state state)))

(setf (elt outcome (first action)) (second aic})
outcome))

(defmethod h-cost ((problem nqueens-complete-pnopftate)
"Number of pairs of queens attacking each other."
(let ((n (length state))
(sum 0))
(loop for i from O to (- n 2) do
(loop for j from (1+i)to (- n 1) do
(let ((delta (- (aref state i) (aref state j))))
(when (or (= delta 0) (= (abs delta) (- j i)))
(incf sum)))))
sum))

(defun random-nqueens-complete-state (n)
"Return a random complete state with n queens pen column."
(let ((state (make-sequence 'vector n)))
(loop for i from O to (1- n) do
(setf (elt state i) (random n)))
state))

;1» Methods for genetic algorithms applied to céetg-state nqueens

(defmethod GA-encode ((problem nqueens-completbl@no) state)
"Encode state as a sequence - already in that'for
state)

(defmethod GA-decode ((problem nqueens-completblpmo) individual)
"Decode state from sequence - already in that.for
individual)

(defmethod GA-alphabet ((problem nqueens-completbipm))
"Return the list of characters used in sequeoca f 0 through n-1."
(iota (nqueens-complete-problem-n problem)))

(defmethod fitness ((problem nqueens-complete-prabindividual)
"Return the number of non-attacks between quéens.
(let ((n (length individual)))
(- / * n (- n 1)) 2) (h-cost problem individl))))

Appendix: Problem

;i -*- Mode: Lisp; Syntax: Common-Lisp; -*- Fil@roblems.lisp
;;;; Defining Problems

(defstruct problem
"A problem is defined by the initial state, suss@r function,
goal test, and path cost (defined, in turn,tep sost). [2e p 62]"
(initial-state (required)) ; A state in the domai

)

;; When we define a new subtype of problem, welnieespecify eeither
;1. 1) a SUCCESSOR-FN method; or

;11 2) ACTIONS and RESULT methods.

;»» If one or the other is not done, an infinitegowill result!

;;; We may also need to define methods for GOAL-THS-COST, and
i1 STEP-COST, but they have default methods whiely be appropriate.
;> In addition, there is a technicality: states actions require

;;; hash keys, although a default is provided difen works (see below).

(defmethod successor-fn ((problem problem) state)
"Return a list of (action . state) pairs that barreached from this state."
(mapcar #'(lambda (action) (cons action (resubfem action state)))
(actions problem state)))

(defmethod actions ((problem problem) state)
"Return an list of actions possible in this state
use this default method only if successor-fimédependently defined!"
(mapcar #'car (successor-fn problem state)))

(defmethod result ((problem problem) action state)
"Return the state resulting from executing actiostate;
use this default method only if successor-fimédependently defined!"
(cdr (assoc action (successor-fn problem state)
‘test #'(lambda (al a2)
(equalp (action-hash-key problem al)
(action-hash-key problem a2))))))

(defmethod sequence-result ((problem problem) aeterjuence state)
"Return the state resulting from executing ac8eguence in state.
Useful for checking that a proposed solutiorusege achieves the goal.”
(if (null action-sequence)
state
(sequence-result problem (rest action-sequence)
(result problem (first action-sequence)esiat

(defmethod successor-states ((problem probleng)stat
"Return a list of states that can be reached frosstate.
This ignores actions, and is appropriate onfyoffline local search.”
(mapcar #'(lambda (action) (result problem actitate))
(actions problem state)))

(defmethod goal-test ((problem problem) state)
"Return true or false: is this state a goal State
(declare-ignore state)

(required))

(defmethod step-cost ((problem problem) state bactiate?)
"The cost of going from statel to state2 by tglkantion.
This default method counts 1 for every actionovitle a method for this if
your subtype of problem has a different ideehef¢ost of a step."”
(declare-ignore statel action state2)
1)

(defun path-cost (problem action-sequence &opti¢state (problem-initial-state problem)) (cost 0))
"Return the sum of step costs along the giveiorasequence.”
(if (null action-sequence)
cost
(let ((next-state (result problem (first actisequence) state)))
(path-cost problem (rest action-sequencel} stete
(+ cost (step-cost problem state (first actiegeeence) next-state))))))

(defmethod h-cost ((problem problem) state)
"The estimated cost from state to a goal for pinablem.
If you don't overestimate, then A* will alwaysfi optimal solutions.
The default estimate is always 0, which certagddgsn't overestimate.”
(declare (ignore state))
0)

;11 The ability to generate a single random sucuess
;+» rather than all successors at once, is impoftan
;;; local search algorithms in domains with lartges
;1 representations and/or many successors.

(defmethod random-successor ((problem problemg)stat
"Return (a . s) for a random legal action a andame s."
(let ((action (random-action problem state)))

(cons action (result problem action state))))

(defmethod random-successor-state ((problem prgkdeate)
"Return the outcome s of a random legal action."”
(result problem (random-action problem statele¥ta

(defmethod random-action ((problem problem) state)
"Return a random legal action in state; typictiig
method must be defined specially for each dorhain
(random-element (actions problem state)))

;1 Hash keys for states and actions.

;;; States are hashed in the graph search algajthath states and actions

;;» are hashed in the enumerated-problem class.states or actions represented
;11 by complex data structures may not be EQUALIRéf representation

;7 is not canonical, so we must define hash keyshfem.

;1 For example, moves in backgammon can be writtemy permutation

;> and still be the "same" move. However, thigaiion is rare.

;> In most cases, the state or action representagrves as its own hash key.

(defmethod state-hash-key ((problem problem) state)
"Key to be used to hash the state; identicaéstatust have EQUAL keys.
Default is the state itself, i.e., assume a narab representation.”
state)

(defmethod action-hash-key ((problem problem) agtio
"Key to be used to hash actions; identical astimust have EQUAL keys."
action)

