CS 188 Week 12 11/9/05

Session 12

l. Announcements [5 minutes]

 Homework 5B is due 11/22. Get partners and get busy as this is a 2 partner.
* |won't be around over Thanksgiving break, but I'll be here until Wednesday.
* There is also an assignment for programming Spider Solitaire; get ready.

Il. Particle Filtering Revisited
» particle filtering — leverages the above observations to make an efficient
sampling algorithm that isonsistent We begin witiN samples from the prior
distribution at time OP(X,). Then we use an update cycle
o Each sample is propagated to next time slice by sampling the next state
valuexi+1 givenx; using the transition mod@(X,,, | X,).
o Each sample is weighted by the likelihood it assigmthe new evidence:
P(e.. | %.,) from the sensor model.
o A new population oN samples isesampledeach new sample is selected
proportional to its likelihood weight.
* An alternative way to look at particle filteringhy only looking at the first time
step and viewing it through the looking glass @& ithitial sample from the prior.

o Each forward propagation is equivalent to sampliogh the new “prior”
on the next time step generated by the previous one
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. Decision-Theoretic Agents
» an approach to designing agents for partially olzg#e stochastic environments
* dynamic decision network— a dynamic Bayesian network (for transition and
observation models) augmented with decision adityutiodes.

0 X, - set of state variablesat transitionT (s, a s)= X, [X,, A

o E, - set of evidence variablestat observatiorO(s, o) = P(E, |X,)
0 A - action made at time
o0 R -reward received at tinte
o U, - utility of the state at time
Ao A1 At Atr1 Ata
Xt1 Xt X1 X2 X1 Ur
Re1 R: t+1 t+2
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o current and future actions as well as future rewart future
observations are all unknown.

» Afiltering algorithm is used to incorporate newians and percepts and thereby
update the new belief state via a forward update.

o By marginalizing future observations, the decidioeoretic agent
accounts for value of information thereby allowfoginformation-
gathering actions where appropriate.

o Similar to ExpectMinimax algorithm except

1. rewards can be non-leaf states
2. decision nodes correspond to belief states

o Time complexity for exhaustive search to deqhtﬁ)(|D|d|E|d) where|D|
is the number of available actions d&glis the number of possible
observations.

» Decisions are made by forward projecting possibtea sequences and choosing
the best one.

o graceful degradation — can easily revise plan talgaunexpected
observations.
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[ll.  Game Theory

» theory used to analyze games of simultaneous and continuous moves.
» Agent Design— determining the best strategy to take against a rational player as
well as the expected return for each player.
 Components
o Players
0 Actionseach player can choose.
o Payoff Matrix — gives the utility for each player in each combination of
actions the players can take.
» strategy— a policy for taking actions in a given situation.
0 pure strategy— there is a predetermined action for each situation.
0 mixed strategy— a randomized policy choosing actions from a

distribution; actiors; chosen w/ probability;: [pras...;p: g

» strategy profile — an assignment of a strategy to each player.
0 solution — a strategy profile where each player adoptsianatstrategy.
o strongly dominates— a strategy strongly dominates strategyif the
outcome forsis better than the outcome f&r(with respect to playep).
o weakly dominates— a strategg weakly dominates strategyif sis better
thans’ on at least one strategy profile and is no worsaryy other profile.
o dominant strategy— a strategy that dominates all others.
* outcome- a numeric value for each player based on thdtsesithe game.
o Pareto optimal— an outcome preferred by all players over anyrothe
o Pareto dominated— one outcome is pareto dominated by a second if al
players would prefer the second outcome.
* Nash equilibrium — a property of a strategy profile such that ny@taan
benefit from changing strategies.
o dominant strategy equilibrium — each player has a dominant strategy.
o Every game has a Nash equilibriaithough not necessarily dominant).
o When there a multiple acceptable solutions (equd)pif each player
chooses a different solution, the resulting strgtpopfile may not be a
solution and all agents will suffer.
» could use Pareto-optimal Nash Equilibrium if onestsx
= coordination games— games in which players need to
communicate.
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* Maximin Equilibrium — a Nash Equilibrium for mixed strategies.
0 zero-sum game- game in which payoffs in each cell of the payoétrix
sum to 0.
o Algorithm
= Assume that the®Iplayer goes®l The strategy for the"?player
IS Now a pure strategy since the expected utiigomes a convex
combination and thus no mixed strategy can do btés a pure.

* This can be thought of as a minimax tree with adineor
each of the 3 player’s possible strategies, each of which
has 2 branches for th&%player.

* The resultis a hyperplane in the space defineithéy
probability of each action and its expected utiligorn-
actions,n such hyperplanes are created.

« dominated strategies for th&'player are removed

» the optimal choice is at the intersection of thpdrplanes
(a maximum), which can be found by linear prograngni

» This process is repeated for each player.
o0 Every two-player zero-sum game has a maximin dujwiin for mixed
strategies.
o Every equilibrium in a zero-sum game is a maxirairbbth players.
o Non-zero-sum games:
1. Enumerate all possible subsets of actions that thidgin mixed
strategies.
2. For each strategy profile enumerated, check taf seis an
equilibrium.

» prisoner’s dilemma— a game in which two thieves are being interredat
seperatly. If botlefuseto confess, they will get 1 year eachteltify, both will
get 5 years. But if fefusesand the othetestifies the former gets 10 years and
the later gets 0.

o0 optimal strategy for both is testify.

* repeated game- player’s face the same choice repeatedly but #ae with the

knowledge of the history of all players’ previouses.
o If the number of repetitions (meetings) is knowrg butcome can be
inductively determined by the optimal strategyttoe last meeting.
0 More cooperative behavior is possible if the chaheg¢the player’s will
meet again is probabilistic.
» perpetual punishment— equilibrium strategy to be nice to other
player unless the other player has ever betrayad yo
» tit-for-tat — start withrefuseaction and mimic other player’'s
previous move from that point on.
= ignorance is bliss— having other player think you are ignorant.

» games of partial information — repeated games with partially-observablity.

» Bayes-Nash equilibrium— an equilibrium with respect to a player’s prior
probability distribution over the other playerg'agegies.

0 addresses the fact that the other player mighplagtan equilibrium
strategy thereby allowing an improvement.
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Mechanism Design— how to define rules of the environment so thatdbllective
good of all agents is maximized when each agenttadbe game-theoretic solution to
maximize its own utility. Alternatively, a way tesign multiagent systems that solve
problems in a distributed fashion without each ageeding to know what problem is
being solved.

mechanism- consists of (1) a language for describing thetegies an agent may
use and (2) an outcome ruethat determines the payoffs to the agents given a
strategy profile.
tragedy of commons- situation in which individuals acting for indaal good
create global bad (Farmers overgraze commons edlfiaid).
0 Must ensure that afixternalities(effects on global utility not recognized
by agents) are made explicit.
strategy-proof mechanism- a mechanism where players have a dominant
strategy that ultimately reveals their true incesdi
Auctions — (1) there is a single good (2) each &iddhs a utility valug; for the
good (3) the value is only known to the bidder.e Bidders make bids and the
highest bid wins the goods.
o English Auction — auctioneer increments the price of the goodi amity
1 bidder remains.
» simple dominant strategy, bid until your persorele is
exceeded, results in bidder with highest valudarggethe goods.
» Requires high bandwidth secure communication.
0 Sealed-Bid Auction— each bidder makes a single bid communicated to
the auctioneer and the highest bid wins.
= Player with highest value may not get the goods.
» Players must spend effort considering other playstrategies.
0 Sealed-Bid Second-Price (Vickrey) Auction- winner pays the price of
the second highest bid.
o0 dominant strategy is to bid player’s actual valod player with the
highest value wins the goods.
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IV. Making Simple Decisions

decision-theoretic agent- an agent capable of making decisions in the d&ce
uncertainty and conflicting goals via a continuousasure of state quality.

Combining Belief and Desire under Uncertainty

» utility function — describes the desirability of each state. Caetbivith the
probability of each action’s outcome these giveeetgd utility of the action.
0 expected utility (A is the actionE is the evidence):

EU[A| E]:Z P(Result( A |Dq A .§ Y Resylf A

o principle of maximum expected utility (MEU) — a rational agent should
choose the action that maximizes it's expectedyutil
o If an agent maximizes a utility function that catig reflects the
performance measure for behavior, it will achielve highest possible
performance measure in averaging over all enviroms@ossible.
» one-shot decisior- agent only chooses the next action to make.
» sequential decision- agent must choose best possible sequence ofgcti

Utility Theory

1. A-B Ais preferred tds.
2. A~-B agent is indifferent betwee¥andB.
3. A-B agent preferé to B or is indifferent.

- Lottery — a set of outcomes with a probabilityp:: L =[p,,C;; ., Cyi...; R, G]

» Axioms of Utility Theory
1. Orderability — for any two states, an agent must prefer ornlee@ther or
else be indifferent between them.
(A-B)O(A< B)O( A~ B
2. Transitivity —A preferred to B, & B preferred to C, then A meéd to C.
(A-B)O(B-C)=(A- Q
3. Continuity — If B is between A and C in preference, therestsxi
probabilityp for which the agent is indifferent between gettihépr sure
and a lottery that yields A with probabilipyand C with probabilityl-p.
A-B-C = Op [pAl- pG-~ E
4. Substitutability — an agent indifferent to A and B is indiffereatZ more
complex lotteries, 1 with each A and B.

A~B = [pAl-pd=[pnBl- p¢
5. Monotonicity — If 2 lotteries have the same outcomes, A anand,agent
prefers A to B, then it also prefers the lotteryhanigher probability of A.

A-B = pzq-[pAl- pBx-[qA- pk
6. Decomposability— Compound lotteries can be decomposed:

[pAL-p[aBl-qd]-[ pALr paBE Wt b ¢
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o Utility
1. Utility Principle
U(A)>U(B) = A-B
U(A)=U(B) = A-~-B
2. Maximum Expected Utility Principle

U([p.siip §l)=2 U9

* By observing a rational agent’s preference, itasgible to construct the utility
function representing what the agent’s actionsygttdo achieve.

Utility Functions

» the utility of money
0 monotonic preference — agent prefers more mon&sto
o true utility of positive money is motegarithmic... given only a small
amount of money, agent is willing to risk it allhereas the rich need
more incentive since less gain is not worth thle oishaving nothing.
0 in considering negative money, utility becomes asufye... the deeper in
debt one goes the more risk one is willing to tikeliminate it.
* Insurance Premium
0 insurance premium — the difference between theaggdenonetary value

of a lottery and its certainty equivalent? =U (L)-U (SEMV( L)) where
Semvq is the state of having the expected monetary vaflletteryL.

= |P>0 risk adverse
= |[P=0 risk neutral
= |P<O risk seeking

» utility scales and assessment
o Consider transformatiob '(S) = k + k U( § where k is any constant

and k is any positive constant. Then the agent’s banasithe same for
utility U and U".

o In a deterministic context, agent’s behavior ishamged by any
monotonic transformatio® value function — a function that provides a
ranking of states rather than meaningful numerices

= best possible prizéJ (S)=u
= worst possible prizeld (S)=u
= normalized utility -u =0 andu, =1.
* normative theory — how a rational agent should act.
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Multiattribute Utility Functions

multiattribute utility theory — utility theory for outcomes involving two or
more attributesX = X,,..., X, .

strict dominance — option 1 has higher value on all attributes thaother option
2. Clearly the ¥ option is chosen.

stochastic dominance- if two actionsA; andA; lead to probability distributions
p1(x) andpz(x) on attributeX, thenA; stochastically dominateés on X if,

Ox [ a(y)dys[ p(yd
o If A; stochastically dominates,Ahen for any monotonically
nondecreasing utility function U(x), the expectétityi of A; is at least as
high as the expected utility 0§.A
0 qualitative probabilistic networks — algorithms for making rational
decisions based on stochastic dominance alone.
representation theorems- theorems that identify regularities in preferenc

behavior; U (%)= FLE(%) 0 (%) ]

preference independence- attributesX; andX; are preferentially independent
of X3 if the preference between outcomes x,, x,) and(x ', ", x,) doesn't

depend on the value.
mutual preferential independence (MPI)— no attributes affect the way in
which one trades off to the other attributes agaash other

o |If attributes X,,..., X, are mutually preferentially independent, then the

agent’s preference behavior can be described asmzaxg the function
V(% %)= 2 V(%)

where eacly; is a value function referring only to the attrid.
o additive value function— a multiattribute value function that is the sum
of value functions for individual attributes.
o Even in situations where additive value functioresrzot valid, they often
serve as good approximations to the actual valnetions.
utility-independence— an extension of preference independence toilegte A
set of attributeX is utility-independent of a set of attributésf preferences
between lotteries on the attributesdrare independent of the particular values of
the attributes iry .
mutually utility-independent (MUI) — each subset of a set of attributes is
utility-independent of the remaining attributes.
o multiplicative utility function — a function that can express the behavior
of any agent exhibiting MUI in onlg single-attribute utilities and
constants fon attributes.



CS 188 Week 12 11/9/05

Decision Networks

» decision network— a Bayesian network with additional node typesafdions
and utilities. Contains information about the atgeourrent state, its possible
actions, the state resulting from the agent’s actmd the utility of the state.

0 Structure
» Chance nodes (ovals)represent random variables each with a
conditional distribution indexed by parent statBarents can be
other chance nodes or decision nodes.
» Decision nodes (rectanglesyepresent points where agent has a
choice to make.
= Utility nodes (diamonds} represent the agent’s utility function.
Its parents are all variables directly affectindjiyt
0 action-utility tables — A simplified form in which the action is connedt
directly to the utility thus making the utility nedepresent the expected
utility... a compiled version.

The Value of Information

» information value theory — theory describing what information is best tquace
in order to make a decisionone of the most important parts of decision making
is know what questions to ask.
0 sensing actions actions preformed in order to acquire informatio
o value of information — the value of a piece of information is the
difference between the expected utility betweerbis possible actions
before and after information is acquired.

» |nformation has value to the extent that it isljki® cause a
change of plan and to the extent that the new pidirbe
significantly better than the old one.

» value of perfect information (VPI) — value of information assuming exact
evidenceE; of some random variable is obtained:

Vel (8)=(SP(5 = 5) Ea, | £ 6= ¢)|- Eal b
o Properties
" VPlis non-negativej,E VPI.(E;)20
» VPl is not additive (in general):
VPI(E,, E)# VPL( E)+ VPL( E)
» VPl is order-independent:
VPI.(E; E)=VPL(E)+ VPL. ()= VPL. ( E)+ VP B
* Information-Gathering Agent

0 agentismyopic since the VPI formulation only accounts for thieef of
evidenceg; given that only thak; is observed without including the

possibility that future evidence may make the olest@wn of E; more
valueable.
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V. Making Complex Decisions

Sequential Decision Problems — utility depends on a sequence of decisions.
» transition model T(s,a,s’)— probability of going from stateto s’ via actiona.
o0 Markovian — the probability of reaching from s depends only on stase
and not on the entire history of earlier states.
* environment history — the sequence of states on which utility depemdstate
s, the agent receivesraward of R(s)so we simplysumthe rewards received.
» Markov Decision Process (MDP}- a fully observable environment with a
Markovian transition model and additive rewards.
0 initial stateS,, transition modeT(s,a,s’) & reward functiorR(s)
- policy 77- a plan of what action to take in a given states 77(5)
« optimal policy 77 - a policy that yields the highest expected wtilit
» Optimality for a sequential decision process
o0 Is the task episodic or continual?
» finite horizon — the decision process goes on for a fixed time
(optimal policy isnonstationary).
» infinite horizon — process continues forevstgtionary policy)
o0 How to calculate the utility of state sequences?
» stationary preference assumption- if two state sequences,

[$.5.s.-.] and[s," 5" s"...], begin with the same state,
$ =S, then the preference order of the two sequencaddhe

the as sequencgs;, s,,...] and[s',s"...] are ordered.
» Under stationarity, there are only two possiblétigs:

« Additive Rewards Uh([sb,q, %'“-]):ZLO R 9

- Discounted RewardsJ, ([s,, 5. s5.--]) =Y./ K 8
o] yD[O,]] is a discount factor equivalent to an interest

rate of (1/y) - 1.

» How to calculate utility when history is infinite.
1. For discounted rewards with a maximum rew&gd, and

y <1, utility is still finite:

Up([%: 5 5.-])< Ral(1-V)
2. Proper policy —guaranteed to always reach terminal state.
3. Compare infinite sequences by mean reward perdte
o How to choose between policies?
= A policy rgenerates a whole range of possible state seggjence
each with a certain probability determined by tia@sition model.
» Value of policy is the expected sum of discountaards.
= optimal policy:

7= argnmaxE[ZZO VR(s) 17|
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Value lteration — an algorithm to calculate the optimal policydajculating the utility
of each state and using state utilities to sellecimal action in each state.

Utility of a states by following policyzz ~ U”(s) = E{iy‘ R s)|m s= }
t=0

True Utility of states: U(s)=U"(9
Maximum Expected Utility (MEWrinciple:77 =argmax) T (s a,s) U( s

Bellman Equation
U(s)=R(g+ymaxx T sad 4 3

o The utility of a state is the immediate rewardtfwat state plus the utility
of the next state, assuming that the agent chdbsesptimal action.
o0 Forn possible states, there will beBellman equations in unknowns.
Unfortunately they are nonlinear.
Iterative Approach — calculates the utility of each state via thétutof their
neighbors> propagates information through the state spackea updates.

o Bellman Update UM(S) = R( S)+Vm§><§ 1( Sa 9 L( #

o Converges to a unique solution whose corresporatitigy is optimal.
= contraction — a unary function that, when applied to two defe
values in turn, causes their output values to hestér together”.
* it can be shown, the function has a single fixeith{po
» The Bellman update can be viewed as an opeBagqplied to the
set of utilities:U,,, = BU,

= maxnorm: |U| = max‘U (s)‘
» The Bellman update is a contraction by a fagton the space of
utility vectors. That is, let); andU; be two utility vectors, then
Jbu-BU |, =AU -y
= if U, —U||max is theerror in estimatdJ;.

* If Rnaxis the bound on the rewards, then the number of
iterations required to reach an error of at naast
N = log(2R,,) - log( (1))
~log(y)
» If the update is small, then the correspondingreasremall
||Ui+1_Ui||max<£(1_y)/y = ||Ui+1_U||max<£

» What the agent really cares about is how well it @o if it makes
decisions based on the current utility function

* policy IossHU & —UHmaX - the most the agent can lose by

max

executing policyrr instead of the optimal policy.
U -ul..<e = UT-U| <2eyi(1-y)
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Policy Iteration — an alternative way to find optimal policies btemating between 2
steps: policy evaluation and policy iteration.
» Policy Evaluation — given a policys, calculateU, =U " .
0 since policy is chosen, Bellman equations beconeal:

U()=R3+yE T sm( 5 4 ¢}
o Thus, givem states, this can be solved using linear algeb@(i).
« Policy Iteration — calculate a new MEU policyx:; based on maximiziny, .

* Modified Policy Iteration
o Use simplified Bellman updates repeakatmes for the evaluation step:

Uin(8)=RO9+y2 Tsm (3§ 1 3

o Often more efficient than either value iteratiorpolicy iteration
» Asynchronous Policy Iteration— pick any subset of states and apply either
policy evaluation or policy iteration to that subse
0 Under certain conditions on the initial policy aumdity function, will still
converge to optimal policy
o Allows freedom to choose what states to work on.

Partially Observable MDPs (POMDP) — an MDP agent operating in a partially
observable environment where the optimal acti@tates also depends on how much the

agent knows in state Defined in terms of &ansition modeIT(s, 3 S) , areward

function R('s), and arobservation modeD(s, o that specifies the probability of

perceiving observatioa in states.
* belief-stateb — the set of actual states the agent might bepresented by a
probability distribution over all states.
o If b(s)was the previous belief state when the agent egs@dtiora and
observes observatian the new belief state is

b'(s)0O(s, 9> (sa§ b)
» The optimal action depends only on the agent’santrbelief state> a mapping
7T (b) from belief states to actions.

» Solving a POMDP on a physical state space can teaed to solving an MDP
on the corresponding belief state space with tri@msimodelr and rewardso.
o0 The probability of an observatiangiven actiora in belief staté is,

PlolaB=Y (%9 (s} b)

0 Theprobability of transitioningrom belief statd to belief statd’ via
actionais,

r(b,ab)=> P(blaahd G sp> [ sak(b)
o Thereward functiorfor belief states is,  p(b)=> b(s) R 3
o Finding even approximately optimal POMDPs is cszlliftc— PSPACE-hard



