Session 11

l. Announcements [5 minutes]
 Homework 5A is due 11/14. Get partners and get busy as this is a 2 partner.

Overview

My sections are a bit ahead of lecture this week, so it occurs to me that aieiyeap

fast. As such we’ll cover 2 topics today and then the floor is open for questions. The
topics we’ll be covering will hopefully give you an introduction to the matgoalll

need to know for Assignment 5 and I'm hoping your experience with Assignment 4 will
fuel questions.

1. Dynamic Bayes Nets
a. Constructing
b. Exact Inference
c. Approximate Inference
2. MCMC
a. Why Monte Carlo?
b. Why Markov Chains?
3. Project/Homework Questions and Noisy-OR




Dynamic Bayesian Networks

Dynamic Bayesian Networks (DBN}- a Bayesian network that represents a temporal
probability model by having state variabksreplicated over time slices with the same
conditional independences. We also have evidence at each time; slieer simplicity
we assume a’lorder Markov proces® a node’s parents are either in the current or
previous time slice.

DBNs take advantage of the sparseness of the temporal probability model,
whereas the equivalent HMM assumes all internal state is dependent.
DBNs can model arbitrary distributions (thus extending beyond the capalafities
a Kalman Filter) allowing it to capture nonlinearities other models cannot.
Constructing DBNs
0 We need 3 broad types of information:
1. aprior distributioron the initial variables: P(X,)

2. atransition model P (X [X,)

3. asensor model P(E |X,)

o In addition, we must specify a local and tempavablogy of the nodes at
the current state and the nodes at the previotes sta
0 Since the transition & sensor models are assumbd stationary they
remain the same over tim2 only need to specify for initial time slice
0 Issues we need to deal with:
» Noise we assume that our measurements are noisy, wi@ch
model with aGaussian error model
= Failure: in the real-world, sensors fail — we need to nhdlie
effect.

* In order to properly handle sensor failure, the sensor
model must explicitly include the possibility of failure.

» transient failure model — allocates a probability that the
sensor will return some nonsense value. Thislmeffect
of “inertia” to prevent radical shifts due to intermediate
failures.

o persistent failure model — describes how a sensor behaves
under normal and failure conditions. In particuiae have
a small probability of failure, but it also modéhe fact that
sensors tend to remain broken.



Exact Inference- given a sequence nfobservations, we simply construct the
necessary DBN af time slices — a process knownuas olling.
o But naively constructing the unrolled network regqaO(t) space and
inference at each time step increase3(t
o A more efficient process useariable elimination before proceeding to
the next time slice — this is equivalent to stgr@X; with a new initial
distribution determined by our variable elimination
» This process exactly mimics the operation of angea filtering
update. This allows us to have constant spaceiedoer slice.
» Unfortunately the constant is exponential in number of state
variables.
= We cannot efficiently and exactly reason about the complex
temporal processes represented by general DBNs.
Approximate Inference to estimate inference on a DBN we need to oveeca
few obstacles:
o Overcoming these blocks relies on 2 observations.
= Again, unrolling the network is inefficient. Agaiwe run the
samples through the network one slice at a tikVe. use the
samples as approximate representations of the current state
distribution
» Generating the samples with naive likelihood werghtvill have
~0 probability of matching the evidence. Thus,.w.lthe samples
will be independent of the evidence and will havenreight.
* Thus, we require exponential samples to get acgurac
* Instead, we want to focus the set of samples on the high-
probability regions of the sate spac@/e simply throw out
samples of very low weight.
o particle filtering — leverages the above observations to make amegffi
sampling algorithm that isonsistent. We begin witHN samples from the

prior distribution at time OP(X,). Then we use an update cycle
» Each sample is propagated to next time slice bypBagithe next
state value; givenx; using the transition mod@(X,,, | X, ).
= Each sample is weighted by the likelihood it assignthe new
evidence:P(e,, | X.,) from the sensor model.

* A new population oN samples isesampledeach new sample is
selected proportional to its likelihood weight.




. MCMC

» Markov chain Monte Carlo (MCMC) — a sampling technique that settles into a
dynamic equilibriunrsuch that the long-term fraction of time spent¢ach state is
exactly its posterior probability given certain ddrons.

0 Markov chain — a structure that defines the probability of siianing
from the “current” state to the “next” state.
* transition probabilityq(x - x') - the probability that the process

transitions from state to statex’.
» ergodic — essentially every state much be reachable frarye
other and there can be no strictly periodic cycles.

= state distributionsz (x) - the probability of being in stateat the
t-th step of the Markov chain.

0 dstationary distribution — a state distribution such that =z,

Ox' m(x")=> m(x)q(x - x)

X

» This distribution is unique if the chainesgodic
= A distribution is stationary if it satisfies tlietailed balance
equation:
Ox, x" m(x)g(x - x")=m(x") q(x" - x)

Question 4.12 from Text



IV. Noisy-OR

Suppose there aredisease®; all of which cause a symptos In the classical logic
world, we might think that if you at least one bétdiseaseB; than you would have
symptomS and you wouldn’t have it otherwise. This is madeby the following logical
sentence (a simple OR-gate):

S=QnODO0...0D,

Of course, we want to incorporate uncertainty thpicture. This is captured by a
particular model known as tidoisy-ORmodel. The general graphical structure for this

model is simply:

However, this graphical structure does not capailrihe intricacies we specified in the
logical setting (In fact, the above graphical madehe same faNoisy-ANDand many
other “Noisy” versions of logical gates). The ceptofNoisy-ORmust be captured in
the conditional probability table. It must have following properties:
1. We want to model the probabilistic structure of &Rh that (roughlyp=trueif
any one of the diseases is present@nfhlseotherwise.

a. P(S=trug D= D=...= Q= fals$=0
b. P(S= fals¢ D= D=...= Q= falsp=1
2. It seems bad form to say there is O probabilithafing a symptom... couldn’t
there be causes we’re not accounting for?
a. We assume we've accounted for ALL caugesy miscellaneous causes
can be captured by an exteak node
3. Even if a cause (disease) is present, the effgatgom) might be inhibited. This

is the uncertainty we wish to model.
a. Each cause can be inhibited with probabtjty Thus,

P(S= falsd D= D=...= D= false Pp= true= ,
b. We assume each cause is inhibited INDEPENDENTINMS the
probability that we havB®; andD; but notSis given by:

P(S: falsg D= D=...= D= false D= true D= trL)e: i g
4. Thus, the entire conditional probability table denfashioned with onlg
parametersy, d,,..., g, rather tharo(2").

Note: there is an alternative graphical model thaptures these assumptions explicitly
through auxiliary variables, but it's not importaftr our purpose.



V. Alternate Material

Structure of Bayes Nets
* The structure of a network contains the essential information about the
conditional independence of the random variables.

* There are many reoccurring structures that capture common assumptions.
o Naive Bayes Model

Bo ©

(a) conditionally independent features

(2)%) o)
! j@l(xj 0-2,) ‘“'

0 otherwise
o Hidden Markov Model
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* These models are very important in a branch of Al known as Statistical Machine
Learning where we try to learn their parameters from observationsl-otodd
phenomenon we assume follow a given model.
0 Inconsistencies between the exact model are often secondary to the effect
captured in the structure of the model.

o Independence assumptions often don’t hold in the real world, but the
models still perform well due to the approximate independence exhibited.

o Noisy Or Model




Foundations

* Conditional Independence — implies that two variables X,Y are independent
given variable Z:

P(XYIZ=HXI2RYME PAYE PX)

» Bayes’ Rule- application of product rule that allows diagnosieliefs to be
derived from casual beliefs:

P(Y| X)= P(XP'(\?()P(Y) PY| X = R XlP(Yx)Te)P Y)

Chain Rule of Probability Theory — In general,
(% X %) =[] HX1 X0 %0 X)

Graphical Model — represents the joint probability distributioreowa set of random
variables via the independence relationships betwease variables, thus
concisely encapsulating a family of probabilitydistributions that respect those
independence assumptions.

*» Nodes- correspond in a 1-1 relationship with the vdgabn the
distribution.
» Edges- represent dependence between a pair of randoables. The
interpretation of this dependence depends on wheth&ot the graph is directed.

d-separation —two nodes X and Y in a directed graph are diseed if every path
between X and Y is blocked.
= A path between X and Y is blocked if it has anyha following 3 cases
for any 3 nodes along the path.
 head-to-tail with intermediary observed:|| B| C

* tail-to-tail with intermediary observedh || B| C

* head to head with neither the intermediary norairits
descendants observed:|| B[O

A C A A C B A C B

O-0-0 OO0 OO0



Bayes Ball Algorithm —an algorithm for determining reachability undguaaticular
definition of separation. In particular, it detenes if there exists a path from set
Xa to set g given that the X are “specified.”
1. Place a ball in all nodes ofaX
2. For each ball in the graph, explore each diredt ga ball could use to
move through some neighboring node; this includasrn paths where a
node serves as both origin and destination. Iptta is valid according
to the rules of separation, place a ball at théirsson.
3. Upon termination, if a ball is in a member of Xhe set is reachable;
return true. Otherwise return false.

Probabilistic Inference — the computation oP( X | X;) for a graphG = (v, ¢)
where F,E Ov index sets such thd& n E =0 ; disjoint.

0 query nodes Xg; we want to obtain the conditional probabilitytbése.
0 evidence nodesvariables begin conditioned aXs
o remaining nodes Xg whereR=v\(FO E). Must be marginalized!
o marginal P(XF,&):ZP()%, % >&)
o prior P(x)=> P(%, %)

" P(%. %)
o conditional P(X|X%)=—F—"

U= 0)

o Notes:

» Using the distributive law, factors irrelevant tg@nmation can be
brought outside of it. By associative law, theayrdf sums can
also be swapped.

= Each summation introduces a new factor that hamtrginalized
variable removed but incorporates all other vagahised in that
product.

» Determining the optimal ordering of sums that miizies size of
intermediate terms is, in general, NP-hard.

» Conditioning — the act of basing the probability of the quergde®on specific
values of the evidence nodes.

o evidence potentiald(x,X) - potential that is 1 ifx =% ; 0 otherwise:

Kronecker delta function.
0 evidence potentials transform evaluations into sums

g(%)=>9(x)d(x¥

%



e Continuous Random Variables:

0]
0]

(0]

o

discretization — dividing variable’s possible values into intdsva
parameterization — describing the variable’s distribution by a fenget of
parameters.
hybrid BN — a BN containing both discrete and continuousaldes.
conditional distributions for continuous variables:
» discrete parents’ values are enumerated.
= continuous parents’ must be summarized in a didioh, for
instance, the linear Gaussian distribution wheramaries
linearly with parents’ value and std dev is fixgd= ax+ b.

» linear Gaussian has joint distribution is multiaiei Gaussian over
all variables. These are combined with discretebées in
conditional Gaussians.

conditional distributions for discrete variablegwtcontinuous parents.

Approximate Inference in Bayesian Networks
* Monte Carlo algorithms — algorithms that approxienatdesired quantity through
random sampling.
» Direct Sampling
* Rejection Sampling
» Likelihood Weighting

(0]



15: Probabilistic Reasoning Over Time

Modeling Uncertainty over Time
» Setting
0 X, - asetof unobserved state variables at time
0 E -asetof observable evidence variables for time

0 a:b-denotes an interval froeto b.
» Stationary Process- process of change that is governed by laws thabd
change over time.
* Markov Assumption — current state depends only ofirgte history of previous
states. Processes satisfying this assumptiolMarkov Processes (Chains)
o transition model — law describing how state changes over time.

P(X, | Xoa)= P( X | X,) wherea O{1...t-1}

o first-order Markov Process — current state is solely dependent on the
previous state

= transition model:  P(X, | X_,)

* We assume the evidence variables at tighepend only on the current state.
0 sensor model- law describing how the evidence depends onttie.s

P(E | X, Buet) = ALEL X)
- prior probability for the initial state:P( X,)
* complete joint

(XOT'EiT ”F(X|X F(El X)

» Ways to deal with inaccurate Markov modeling:
1. Increase the order of the Markov process
2. Increase the set of state variables

Filter (monitoring) — the task of computing theelief state- the posterior distribution
of the current state given all evidend®{ X; | e.).

* Recursive estimation — forward chaining.

P(X le)0 el x); R XI X)) 0 X1.8)

recursive estimate
f, O FORWARL £, 8
* When the state variables are discrete, this updatenstant in space and time.
+ Likelihood P(e_T) can be calculated by a likelihood messdge: P (X, &, ):

leT T’e:LT



Prediction — task of computing the posterior distribution oséuture state, given alll
evidence;P( X, | ;) wherek > 0.

» This is equivalent to filtering without new evidencHence, we can easily derive
the following update:

I:)()(thk | Q:T) = z P( Xr+k| XT+ lel) F( Xr+ k1 | PT)
Kook recursive estimate
» stationary distribution — The fixed point of the Markov process that is
approached upon successive applications of theitiam model.
0 mixing time — the amount of time required to reach statioparit
o Prediction is doomed to failure for future timesrsthan a small fraction
of the mixing time.

Smoothing (hindsight) — task of computing posterior distribution fopaststate,
given all evidenceP( X, | g;) where0O<k<T.

» Accounting for hindsight is done with an additiobakckwards message:

P(Xkl%T)D P( X| @k) F( Rt | )Q

1k bk+].’T

Q<+1:T :z P(Q(+l| xk+1) F( X<+1| X() tIer:T

Xk+1
* The time and space needed for each backward measagenstant.
* Thus, the process of smoothing with respea tois O(t).

« Thus, to smooth the whole sequence naively, res@i(g).

» using dynamic programming the cost is 00Ilft) by recording results of forward
filtering over the entire sequence while running blackward algorithm fror to
1 and use the smoothed message at each timestepvard-backward algo.

0 spaceis noWD(| f|t)

* In on-line setting, smoothed estimates must be cwedpfor earlier time slices as
new observations are added:
o fixed-lag smoothing— smoothing is done for the time sli¢steps behind
the current timd.



Most Likely Explanation — task of finding the sequence of states moshitee
have generated a sequence of observatiangsnax P(xm |eu).
* most likely sequence must consider joint probaegdibver all time steps.
» there is a recursive relationship between mostylibaths to each state.X and
the most likely paths to each state X
* Recursive formulation:

maxP (X, I6,)0 A 1 X) max R X 1) maxP X, |e)

observation transition

previous message

0 messages: mn=rQaXP( Xy 16)

0 summation ovek; replaced by a maximization.
» Pointers are used to retrieve the most-likely exgti@n
Viterbi algorithm has a space and time requirenoéQi(t).

Learning — task of learning the transition and sensor nwoftem observed data. This
process leverages inference through EM.

Hidden Markov Models (HMM) — a temporal probabilistic model in which the stat
of the process is described bgiagle discreteandom variable and transitions obey the
Markov assumption.

« transition model: T, =P(X = j| X, =)
* observation model: (O,), =P(g|X =
o forwardmessage - f,,, 00T,
o backwardmessage -b,,,, 1 TO,,b,,.,
o time complexity of forward-backward becom@sé s t) whereSis the

number of hidden states and space complexi§(iSt).



Kalman Filters — a temporal probabilistic model for continuousetspaces under the
Markov assumption and using linear Gaussian digiobs to model the states. A
Kalman filter can model any system of continuoagesvariables with noisy
measurements.

* amultivariate Gaussiawlistribution can be specified completely by itsam@
and its covariance matrix .

* In general, filtering with continuous or hybrid sea generate state distributions
whose representations grow without bound, but thesSian distribution is “well-
behaved” since it has the following properties:

1. If the current distributiorP (X, |e,,) is Gaussian and the transition model
P(X..1%,) is linear Gaussian, then the predicted distributibthe next
step is:

P(X..ley)= L P(X 1%) P(x, ley) %
2. If the predicted distribution is Gaussian and thsewvation (sensor)

model is linear Gaussian, then conditioning on egwence yields the
updated distribution:

P(Xt+1 |e11+1) 0 P(en+1| ><t+1) P( )<t+1|el')
* General formulation:

P (% 1) = N(Fx, 2, ) (X,0)
« FandX, describe the linear transition model & noise.
P(z |%)=N(Hx.Z,)(z,)
« HandX, describe the linear sensor model & noise.
» Updates:
neo, =Fpt Kt+1(zt+1_HFut)
Lu=(1K L) FEF 4,

0 Kalman gain K, =(FLF +E,)H (H(FLF +E,)H +x5,)"

* A measure of “how seriously to take the new obg@wmarelative
to the prediction.

o predicted state at t+1 Bp,, predicted observation idFp,, and error of
predicted observation ig,,, — HFp,) .

» Extended Kalman Filter (EKF) — allows for limitednlinearity in the model by
modeling the systetocally as linear inx, in the region ofx, = p, .

» Switching Kalman Filter —



