
Session 11 

I. Announcements [5 minutes] 
• Homework 5A is due 11/14.  Get partners and get busy as this is a 2 partner. 

Overview  
My sections are a bit ahead of lecture this week, so it occurs to me that we’re going too 
fast.  As such we’ll cover 2 topics today and then the floor is open for questions.  The 
topics we’ll be covering will hopefully give you an introduction to the material you’ll 
need to know for Assignment 5 and I’m hoping your experience with Assignment 4 will 
fuel questions. 
 

1. Dynamic Bayes Nets 
a. Constructing 
b. Exact Inference 
c. Approximate Inference 

2. MCMC 
a. Why Monte Carlo? 
b. Why Markov Chains? 

3. Project/Homework Questions and Noisy-OR 



II. Dynamic Bayesian Networks 
 
Dynamic Bayesian Networks (DBN) – a Bayesian network that represents a temporal 
probability model by having state variables Xt replicated over time slices with the same 
conditional independences.  We also have evidence at each time slice Et.  For simplicity 
we assume a 1st order Markov process � a node’s parents are either in the current or 
previous time slice. 

• DBNs take advantage of the sparseness of the temporal probability model, 
whereas the equivalent HMM assumes all internal state is dependent. 

• DBNs can model arbitrary distributions (thus extending beyond the capabilities of 
a Kalman Filter) allowing it to capture nonlinearities other models cannot. 

• Constructing DBNs 
o We need 3 broad types of information: 

1. a prior distribution on the initial variables: ( )0P X  

2. a transition model:    ( )|t+1 tP X X  

3. a sensor model:    ( )|t tP E X  

o In addition, we must specify a local and temporal topology of the nodes at 
the current state and the nodes at the previous state. 

o Since the transition & sensor models are assumed to be stationary they 
remain the same over time � only need to specify for initial time slice. 

o Issues we need to deal with: 
� Noise: we assume that our measurements are noisy, which we 

model with a Gaussian error model. 
� Failure: in the real-world, sensors fail – we need to model this 

effect. 
• In order to properly handle sensor failure, the sensor 

model must explicitly include the possibility of failure. 
• transient failure model – allocates a probability that the 

sensor will return some nonsense value.  This has the effect 
of “ inertia” to prevent radical shifts due to intermediate 
failures. 

• persistent failure model – describes how a sensor behaves 
under normal and failure conditions.  In particular, we have 
a small probability of failure, but it also models the fact that 
sensors tend to remain broken. 



• Exact Inference – given a sequence of n observations, we simply construct the 
necessary DBN of n time slices – a process known as unrolling. 

o But naively constructing the unrolled network requires O(t) space and 
inference at each time step increases at O(t). 

o A more efficient process uses variable elimination before proceeding to 
the next time slice – this is equivalent to starting at Xt with a new initial 
distribution determined by our variable elimination. 

� This process exactly mimics the operation of a recursive filtering 
update.  This allows us to have constant space and time per slice. 

� Unfortunately, the constant is exponential in number of state 
variables. 

� We cannot efficiently and exactly reason about the complex 
temporal processes represented by general DBNs. 

• Approximate Inference – to estimate inference on a DBN we need to overcome a 
few obstacles: 

o Overcoming these blocks relies on 2 observations. 
� Again, unrolling the network is inefficient.  Again, we run the 

samples through the network one slice at a time.  We use the 
samples as approximate representations of the current state 
distribution. 

� Generating the samples with naïve likelihood weighting will have 
~0 probability of matching the evidence.  Thus, w.h.p. the samples 
will be independent of the evidence and will have no weight. 

• Thus, we require exponential samples to get accuracy. 
• Instead, we want to focus the set of samples on the high-

probability regions of the sate space.  We simply throw out 
samples of very low weight. 

o particle filtering  – leverages the above observations to make an efficient 
sampling algorithm that is consistent.  We begin with N samples from the 
prior distribution at time 0: ( )0P X .  Then we use an update cycle: 

� Each sample is propagated to next time slice by sampling the next 
state value xt+1 given xt using the transition model ( )|t+1 tP X X . 

� Each sample is weighted by the likelihood it assigns to the new 
evidence: ( )| +t+1 t 1P e x  from the sensor model. 

� A new population of N samples is resampled: each new sample is 
selected proportional to its likelihood weight. 

 



III. MCMC 
 

• Markov chain Monte Carlo (MCMC)  – a sampling technique that settles into a 
dynamic equilibrium such that the long-term fraction of time spent in each state is 
exactly its posterior probability given certain conditions. 

o Markov chain  – a structure that defines the probability of transitioning 
from the “current” state to the “next” state. 

� transition probability ( )'q →x x  - the probability that the process 

transitions from state x to state x’ . 
� ergodic – essentially every state much be reachable from every 

other and there can be no strictly periodic cycles. 
� state distribution ( )tπ x  - the probability of being in state x at the 

t-th step of the Markov chain. 
o stationary distribution – a state distribution such that 1t tπ π +=  

( ) ( ) ( )' ' 'qπ π∀ = →∑
x

x x x x x  

� This distribution is unique if the chain is ergodic. 
� A distribution is stationary if it satisfies the detailed balance 

equation: 

( ) ( ) ( ) ( ), ' ' ' 'q qπ π∀ → = →x x x x x x x x  

 

Question 4.12 from Text 



IV. Noisy-OR 
 
Suppose there are n diseases Di all of which cause a symptom S.  In the classical logic 
world, we might think that if you at least one of the diseases Di than you would have 
symptom S and you wouldn’t have it otherwise.  This is modeled by the following logical 
sentence (a simple OR-gate): 
        1 2 nS D D D= ∨ ∨ ∨…  

 
Of course, we want to incorporate uncertainty into the picture.  This is captured by a 
particular model known as the Noisy-OR model.  The general graphical structure for this 
model is simply: 

 
 
 
 

 
 
However, this graphical structure does not capture all the intricacies we specified in the 
logical setting (In fact, the above graphical model is the same for Noisy-AND and many 
other “Noisy” versions of logical gates).  The concept of Noisy-OR must be captured in 
the conditional probability table.  It must have the following properties: 

1. We want to model the probabilistic structure of OR such that (roughly) S=true if 
any one of the diseases is present and S=false otherwise. 

a. ( )1 2| 0nP S true D D D false= = = = = =…  

b. ( )1 2| 1nP S false D D D false= = = = = =…  

2. It seems bad form to say there is 0 probability of having a symptom…  couldn’t 
there be causes we’re not accounting for? 

a. We assume we’ve accounted for ALL causes.  Any miscellaneous causes 
can be captured by an extra leak node. 

3. Even if a cause (disease) is present, the effect (symptom) might be inhibited.  This 
is the uncertainty we wish to model. 

a. Each cause can be inhibited with probability qi.  Thus, 

( )1 2| ,n i iP S false D D D false D true q= = = = = = =…  

b. We assume each cause is inhibited INDEPENDENTLY.  Thus the 
probability that we have Di and Dj but not S is given by: 

( )1 2| , ,n i j i jP S false D D D false D true D true q q= = = = = = = =…  

4. Thus, the entire conditional probability table can be fashioned with only n 
parameters 1 2, , , nq q q…  rather than O(2n). 

 
Note: there is an alternative graphical model that captures these assumptions explicitly 
through auxiliary variables, but it’s not important for our purpose. 
 

D1 D2 Dn 

S 

… 



V. Alternate Material 

Structure of Bayes Nets 
• The structure of a network contains the essential information about the 

conditional independence of the random variables.  
• There are many reoccurring structures that capture common assumptions.  

o Naïve Bayes Model 

 
o Noisy Or Model 

( )
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o Hidden Markov Model 

 
• These models are very important in a branch of AI known as Statistical Machine 

Learning where we try to learn their parameters from observations of real-world 
phenomenon we assume follow a given model. 

o Inconsistencies between the exact model are often secondary to the effects 
captured in the structure of the model. 

o Independence assumptions often don’t hold in the real world, but the 
models still perform well due to the approximate independence exhibited. 
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Foundations 
• Conditional Independence – implies that two variables X,Y are independent 

given variable Z:  
( ) ( ) ( ) ( ) ( ), | | | | , |P X Y Z P X Z P Y Z P X Y Z P X Z= =  

• Bayes’ Rule – application of product rule that allows diagnostic beliefs to be 
derived from casual beliefs: 

( ) ( ) ( )
( ) ( ) ( ) ( )

( )
| | , |

| | ,
|

P X Y P Y P X Y e P Y e
P Y X P Y X e

P X P X e
= =  

 
Chain Rule of Probability Theory – In general, 

( ) ( )1 2 1 2 1
1

, , , | , , ,
n

n i i
i

p X X X p X X X X−
=

= ∏… …  

 
Graphical Model – represents the joint probability distribution over a set of random 

variables via the independence relationships between those variables, thus 
concisely encapsulating a family of probability of distributions that respect those 
independence assumptions. 

� Nodes – correspond in a 1-1 relationship with the variables in the 
distribution. 

� Edges – represent dependence between a pair of random variables.  The 
interpretation of this dependence depends on whether or not the graph is directed. 

 
d-separation – two nodes X and Y in a directed graph are d-separated if every path 
between X and Y is blocked. 

� A path between X and Y is blocked if it has any of the following 3 cases 
for any 3 nodes along the path. 

• head-to-tail with intermediary observed: |A B C�  

• tail-to-tail with intermediary observed: |A B C�  

• head to head with neither the intermediary nor any of its 
descendants observed: |A B ∅�   

 
 
 

A C A C A B C A B 



Bayes Ball Algorithm – an algorithm for determining reachability under a particular 
definition of separation.  In particular, it determines if there exists a path from set 
XA to set XB given that the XC are “specified.” 

1. Place a ball in all nodes of XA. 
2. For each ball in the graph, explore each direct path the ball could use to 

move through some neighboring node; this includes return paths where a 
node serves as both origin and destination.  If the path is valid according 
to the rules of separation, place a ball at the destination. 

3. Upon termination, if a ball is in a member of XB, the set is reachable; 
return true.  Otherwise return false. 

 
Probabilistic Inference – the computation of ( )|F EP X X  for a graph ( ),G ν ε=  

where ,F E ν⊆  index sets such that F E∩ = ∅ ; disjoint. 
o query nodes:  XF; we want to obtain the conditional probability of these. 
o evidence nodes: variables begin conditioned on, XE 
o remaining nodes: XR where ( )\R F Eν= ∪ .  Must be marginalized! 

o marginal  ( ) ( ), , ,
R

F E F E R
x

P x x P x x x=∑  

o prior    ( ) ( ),
F

E F E
x

P x P x x=∑  

o conditional  ( ) ( )
( )

,
| F E

F E
E

P x x
P x x

P x
=  

o Notes:  
� Using the distributive law, factors irrelevant to a summation can be 

brought outside of it.  By associative law, the order of sums can 
also be swapped. 

� Each summation introduces a new factor that has the marginalized 
variable removed but incorporates all other variables used in that 
product.   

� Determining the optimal ordering of sums that minimizes size of 
intermediate terms is, in general, NP-hard. 

• Conditioning – the act of basing the probability of the query nodes on specific 
values of the evidence nodes. 

o evidence potential ( ),i ix xδ  - potential that is 1 if i ix x= ; 0 otherwise: 

Kronecker delta function. 
o evidence potentials transform evaluations into sums:  

( ) ( ) ( ),
i

i i i i
x

g x g x x xδ=∑  



• Continuous Random Variables: 
o discretization – dividing variable’s possible values into intervals. 
o parameterization – describing the variable’s distribution by a finite set of 

parameters. 
o hybrid BN – a BN containing both discrete and continuous variables. 
o conditional distributions for continuous variables: 

� discrete parents’ values are enumerated. 
� continuous parents’ must be summarized in a distribution, for 

instance, the linear Gaussian distribution where mean varies 
linearly with parents’ value and std dev is fixed: ax bµ = + . 

� linear Gaussian has joint distribution is multivariate Gaussian over 
all variables.  These are combined with discrete variables in 
conditional Gaussians. 

o conditional distributions for discrete variables with continuous parents. 
 
Approximate Inference in Bayesian Networks 

• Monte Carlo algorithms – algorithms that approximate a desired quantity through 
random sampling. 

• Direct Sampling 
• Rejection Sampling 
• Likelihood Weighting 

o  



15: Probabilistic Reasoning Over Time 

Modeling Uncertainty over Time 
• Setting 

o tX  - a set of unobserved state variables at time t. 

o tE  - a set of observable evidence variables for time t. 

o a:b – denotes an interval from a to b. 
• Stationary Process – process of change that is governed by laws that do not 

change over time. 
• Markov Assumption – current state depends only on a finite history of previous 

states.  Processes satisfying this assumption are Markov Processes (Chains). 
o transition model – law describing how state changes over time. 

( ) ( )0: 1| |t t tP X X P X Xα− =  where { }1 1tα ⊆ −…  

o first-order Markov Process – current state is solely dependent on the 
previous state 

� transition model: ( )1|t tP X X −  

• We assume the evidence variables at time t depend only on the current state. 
o sensor model – law describing how the evidence depends on the state. 

( ) ( )0: 0: 1| , |t t t t tP E X E P E X− =  

• prior probability for the initial state: ( )0P X  

• complete joint 

( ) ( ) ( ) ( )0: 1: 0 1
1

, | |
T

T T t t t t
t

P X E P X P X X P E X−
=

= ∏  

• Ways to deal with inaccurate Markov modeling: 
1. Increase the order of the Markov process 
2. Increase the set of state variables 

 
Filter (monitoring) – the task of computing the belief state – the posterior distribution 
of the current state given all evidence; ( )1:|T TP X e . 

• Recursive estimation – forward chaining. 
( ) ( ) ( ) ( )

1

1: 1 1 1: 1

recursive estimate

| | | |
t

t t t t t t t t
X

P X e P e X P X X P X e
−

− − −∝ ∑
�������

 

  ( )1: 1: 1,t t tf FORWARD f e−∝  

• When the state variables are discrete, this update is constant in space and time. 
• Likelihood ( )1:TP e  can be calculated by a likelihood message: ( )1: 1:,t t tl P X e= : 

( )1: 1: 1:,
T

T T T T
X

L l X e=∑  

 



Prediction – task of computing the posterior distribution over a future state, given all 
evidence; ( )1:|T k TP X e+  where k > 0. 

• This is equivalent to filtering without new evidence.  Hence, we can easily derive 
the following update: 

( ) ( ) ( )1: 1 1 1:

recursive estimate

| | |
t k

T k T T k T k T k T
X

P X e P X X P X e
+

+ + + − + −=∑
�������

 

• stationary distribution  – The fixed point of the Markov process that is 
approached upon successive applications of the transition model. 

o mixing time – the amount of time required to reach stationarity. 
o Prediction is doomed to failure for future times more than a small fraction 

of the mixing time. 
 
Smoothing (hindsight) – task of computing posterior distribution for a past state, 
given all evidence; ( )1:|k TP X e  where 0 k T≤ < . 

• Accounting for hindsight is done with an additional backwards message: 

( ) ( ) ( )
1: 1:

1: 1: 1:| | |

k k T

k T k k k T k

f b

P X e P X e P e X

+

+∝
������������

 

 ( ) ( )
1

1: 1 1 1 2:| |
k

k T k k k k k T
X

b P e X P X X b
+

+ + + + +=∑  

• The time and space needed for each backward message are constant. 
• Thus, the process of smoothing with respect to 1:Te  is O(t). 

• Thus, to smooth the whole sequence naively, requires O(t2). 
• using dynamic programming the cost is only O(t) by recording results of forward 

filtering over the entire sequence while running the backward algorithm from T to 
1 and use the smoothed message at each time step � forward-backward algo. 

o space is now ( )O f t  

• In on-line setting, smoothed estimates must be computed for earlier time slices as 
new observations are added:  

o fixed-lag smoothing – smoothing is done for the time slice d steps behind 
the current time T. 

 



Most Likely Explanation – task of finding the sequence of states most likely to 
have generated a sequence of observations; ( )

1: 1: 1:arg max |
tx t tP x e . 

• most likely sequence must consider joint probabilities over all time steps. 
• there is a recursive relationship between most likely paths to each state Xt+1 and 

the most likely paths to each state Xt. 
• Recursive formulation: 

  ( ) ( ) ( ) ( )
1: 1 1 1: 2

1: 1: 1 1: 1 1: 1

previous message

max | | max | max |
t t t

t t t t t t t t
X X X

observation transition

P X e P e X P X X P X e
− − −

− − −

  ∝    
����� �����

���������

 

o messages: ( )
1: 1

1: 1: 1:max |
t

t t t
X

m P X e
−

=  

o summation over Xt replaced by a maximization. 
• Pointers are used to retrieve the most-likely explanation 
• Viterbi algorithm has a space and time requirement of O(t). 

 
Learning – task of learning the transition and sensor models from observed data.  This 
process leverages inference through EM. 
 
Hidden Markov Models (HMM) – a temporal probabilistic model in which the state 
of the process is described by a single discrete random variable and transitions obey the 
Markov assumption. 

• transition model: ( )1|ij t tT P X j X i−= = =  

• observation model: ( ) ( ),
|t ti i

P e X i= =tO  

o forward message -  1: 1 1 1:
T

t t t+ +∝f O T f  

o backward message -  1: 1 2:k t k k t+ + +∝b TO b  

o time complexity of forward-backward becomes ( )2O S t  where S is the 

number of hidden states and space complexity is ( )O St . 

 



Kalman Filters – a temporal probabilistic model for continuous state spaces under the 
Markov assumption and using linear Gaussian distributions to model the states.  A 
Kalman filter can model any system of continuous state variables with noisy 
measurements. 

• a multivariate Gaussian distribution can be specified completely by its mean µ  
and its covariance matrix Σ . 

• In general, filtering with continuous or hybrid spaces generate state distributions 
whose representations grow without bound, but the Gaussian distribution is “well-
behaved” since it has the following properties: 

1. If the current distribution ( )1:|t tP X e  is Gaussian and the transition model 

( )1 |t tP +X x  is linear Gaussian, then the predicted distribution of the next 

step is: 

( ) ( ) ( )1 1: 1 1:| | |
t

t t t t t t tP P P d+ += ∫xX e X x x e x  

2. If the predicted distribution is Gaussian and the observation (sensor) 
model is linear Gaussian, then conditioning on new evidence yields the 
updated distribution: 

( ) ( ) ( )1 1: 1 1: 1 1 1 1:| | |t t t t t tP P P+ + + + +∝X e e X X e  

• General formulation: 

( ) ( )( )1 1| ,t t t x tP N+ +=x x Fx Σ x  

• F and xΣ  describe the linear transition model & noise. 

( ) ( ) ( )| ,t t t z tP N=z x Hx Σ z  

• H and zΣ  describe the linear sensor model & noise. 

• Updates: 

( )1 1 1t t t t t+ + += + −µ Fµ K z HFµ  

( )( )1 1
T

t t t x+ += − +Σ I K F Σ F Σ  

 

o Kalman gain ( ) ( )( ) 1

1
T T T T

t t x t x zK
−

+ = + + +FΣ F Σ H H FΣ F Σ H Σ  

• A measure of “how seriously to take the new observation” relative 
to the prediction. 

o predicted state at t+1 is tFµ , predicted observation is tHFµ , and error of 

predicted observation is ( )1t t+ −z HFµ . 

• Extended Kalman Filter (EKF) – allows for limited nonlinearity in the model by 
modeling the system locally as linear in tx  in the region of t t=x µ . 

• Switching Kalman Filter –  


