
Session 10 

I. Announcements [5 minutes] 
• Homework 4 is online and is due November 4th 

o Get started early and get ahead of the game. 
• Homework 5 is after that and is a programming assignment. 

 

Cheating 
The written assignments are to be done individually, the project assignments in pairs. 
 
Discussion of assignments among students is permitted and encouraged, but solutions and 
programs may not be copied. I would recommend NOT mixing discussion with writing 
up of solutions or code. 
 

Overview 
Last session we covered an introduction to Bayes Nets and probabilistic inference.  
Today’s session is a review session focusing on the topics you feel least comfortable 
with.  The following topics are fair game for discussion and are relevant to homework 
questions: 
 

1. Separation in Bayes Nets 
a. undirected graph separation 
b. separation in Bayes Nets 

2. Constructing Bayes Nets 
a. Building in the Causal direction. 

3. Probabilistic Inference on Bayesian Nets 
a. joint probability and marginalization. 
b. variable elimination 
c. junction tree 

4. Approximate Inference on Bayes Nets 
a. Simple sampling (estimating pi) 
b. The Markov Chain 
c. MCMC 

i. stationary distributions 
ii.  Metropolis-Hastings? 
iii.  Gibbs sampler 

d. particle filtering? 
5. An introduction to temporal structure 

a. Markov Assumption 
b. Markov model, structure, HMM 
c. Kalman Filter 
d. Dynamic Bayes Net 



II. Introduction to Bayes Nets 

Structure of Bayes Nets 
• The structure of a network contains the essential information about the 

conditional independence of the random variables.  
• There are many reoccurring structures that capture common assumptions.  

o Naïve Bayes Model 
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o Hidden Markov Model 

 
• These models are very important in a branch of AI known as Statistical Machine 

Learning where we try to learn their parameters from observations of real-world 
phenomenon we assume follow a given model. 

o Inconsistencies between the exact model are often secondary to the effects 
captured in the structure of the model. 

o Independence assumptions often don’t hold in the real world, but the 
models still perform well due to the approximate independence exhibited. 
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Foundations 
• Conditional Independence – implies that two variables X,Y are independent 

given variable Z:  
( ) ( ) ( ) ( ) ( ), | | | | , |P X Y Z P X Z P Y Z P X Y Z P X Z= =  

• Bayes’ Rule – application of product rule that allows diagnostic beliefs to be 
derived from casual beliefs: 
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Chain Rule of Probability Theory – In general, 
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Graphical Model – represents the joint probability distribution over a set of random 

variables via the independence relationships between those variables, thus 
concisely encapsulating a family of probability of distributions that respect those 
independence assumptions. 
� Nodes – correspond in a 1-1 relationship with the variables in the 

distribution. 
� Edges – represent dependence between a pair of random variables.  The 

interpretation of this dependence depends on whether or not the graph is directed. 
 
d-separation – two nodes X and Y in a directed graph are d-separated if every path 
between X and Y is blocked. 

� A path between X and Y is blocked if it has any of the following 3 cases 
for any 3 nodes along the path. 

• head-to-tail with intermediary observed: |A B C�  

• tail-to-tail with intermediary observed: |A B C�  

• head to head with neither the intermediary nor any of its 
descendants observed: |A B ∅�   

 
 
 
Bayes Ball Algorithm – an algorithm for determining reachability under a particular 

definition of separation.  In particular, it determines if there exists a path from set 
XA to set XB given that the XC are “specified.” 

1. Place a ball in all nodes of XA. 
2. For each ball in the graph, explore each direct path the ball could use to 

move through some neighboring node; this includes return paths where a 
node serves as both origin and destination.  If the path is valid according 
to the rules of separation, place a ball at the destination. 
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3. Upon termination, if a ball is in a member of XB, the set is reachable; 
return true.  Otherwise return false. 

 
Probabilistic Inference – the computation of ( )|F EP X X  for a graph ( ),G ν ε=  

where ,F E ν⊆  index sets such that F E∩ = ∅ ; disjoint. 
o query nodes:  XF; we want to obtain the conditional probability of these. 
o evidence nodes: variables begin conditioned on, XE 
o remaining nodes: XR where ( )\R F Eν= ∪ .  Must be marginalized! 
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o Notes:  
� Using the distributive law, factors irrelevant to a summation can be 

brought outside of it.  By associative law, the order of sums can 
also be swapped. 

� Each summation introduces a new factor that has the marginalized 
variable removed but incorporates all other variables used in that 
product.   

� Determining the optimal ordering of sums that minimizes size of 
intermediate terms is, in general, NP-hard. 

• Conditioning – the act of basing the probability of the query nodes on specific 
values of the evidence nodes. 

o evidence potential ( ),i ix xδ  - potential that is 1 if i ix x= ; 0 otherwise: 

Kronecker delta function. 
o evidence potentials transform evaluations into sums:  
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• Continuous Random Variables: 
o discretization – dividing variable’s possible values into intervals. 
o parameterization – describing the variable’s distribution by a finite set of 

parameters. 
o hybrid BN – a BN containing both discrete and continuous variables. 
o conditional distributions for continuous variables: 

� discrete parents’ values are enumerated. 
� continuous parents’ must be summarized in a distribution, for 

instance, the linear Gaussian distribution where mean varies 
linearly with parents’ value and std dev is fixed: ax bµ = + . 

� linear Gaussian has joint distribution is multivariate Gaussian over 
all variables.  These are combined with discrete variables in 
conditional Gaussians. 

o conditional distributions for discrete variables with continuous parents. 



 
Approximate Inference in Bayesian Networks 

• Monte Carlo algorithms – algorithms that approximate a desired quantity through 
random sampling. 

• Direct Sampling 
• Rejection Sampling 
• Likelihood Weighting 
• Markov chain Monte Carlo (MCMC) – a sampling technique that settles into a 

dynamic equilibrium such that the long-term fraction of time spent in each state is 
exactly its posterior probability given certain conditions. 

o Markov chain  – a structure that defines the probability of transitioning 
from the “current” state to the “next” state. 
� transition probability ( )'q →x x  - the probability that the process 

transitions from state x to state x’ . 
� ergodic – essentially every state much be reachable from every 

other and there can be no strictly periodic cycles. 
� state distribution ( )tπ x  - the probability of being in state x at the 

t-th step of the Markov chain. 
o stationary distribution – a state distribution such that 1t tπ π +=  

( ) ( ) ( )' ' 'qπ π∀ = →∑
x

x x x x x  

� This distribution is unique if the chain is ergodic. 
� A distribution is stationary if it satisfies the detailed balance 

equation: 

( ) ( ) ( ) ( ), ' ' ' 'q qπ π∀ → = →x x x x x x x x  

o  



15: Probabilistic Reasoning Over Time 

Modeling Uncertainty over Time 
• Setting 

o tX  - a set of unobserved state variables at time t. 

o tE  - a set of observable evidence variables for time t. 

o a:b – denotes an interval from a to b. 
• Stationary Process – process of change that is governed by laws that do not 

change over time. 
• Markov Assumption – current state depends only on a finite history of previous 

states.  Processes satisfying this assumption are Markov Processes (Chains). 
o transition model – law describing how state changes over time. 

( ) ( )0: 1| |t t tP X X P X Xα− =  where { }1 1tα ⊆ −…  

o first-order Markov Process – current state is solely dependent on the 
previous state 
� transition model: ( )1|t tP X X −  

• We assume the evidence variables at time t depend only on the current state. 
o sensor model – law describing how the evidence depends on the state. 

( ) ( )0: 0: 1| , |t t t t tP E X E P E X− =  

• prior probability for the initial state: ( )0P X  

• complete joint 
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• Ways to deal with inaccurate Markov modeling: 
1. Increase the order of the Markov process 
2. Increase the set of state variables 

 
Filter (monitoring) – the task of computing the belief state – the posterior distribution 
of the current state given all evidence; ( )1:|T TP X e . 

• Recursive estimation – forward chaining. 
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  ( )1: 1: 1,t t tf FORWARD f e−∝  

• When the state variables are discrete, this update is constant in space and time. 
• Likelihood ( )1:TP e  can be calculated by a likelihood message: ( )1: 1:,t t tl P X e= : 

( )1: 1: 1:,
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Prediction – task of computing the posterior distribution over a future state, given all 
evidence; ( )1:|T k TP X e+  where k > 0. 

• This is equivalent to filtering without new evidence.  Hence, we can easily derive 
the following update: 
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• stationary distribution  – The fixed point of the Markov process that is 
approached upon successive applications of the transition model. 

o mixing time – the amount of time required to reach stationarity. 
o Prediction is doomed to failure for future times more than a small fraction 

of the mixing time. 
 
Smoothing (hindsight) – task of computing posterior distribution for a past state, 
given all evidence; ( )1:|k TP X e  where 0 k T≤ < . 

• Accounting for hindsight is done with an additional backwards message: 
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• The time and space needed for each backward message are constant. 
• Thus, the process of smoothing with respect to 1:Te  is O(t). 

• Thus, to smooth the whole sequence naively, requires O(t2). 
• using dynamic programming the cost is only O(t) by recording results of forward 

filtering over the entire sequence while running the backward algorithm from T to 
1 and use the smoothed message at each time step � forward-backward algo. 

o space is now ( )O f t  

• In on-line setting, smoothed estimates must be computed for earlier time slices as 
new observations are added:  

o fixed-lag smoothing – smoothing is done for the time slice d steps behind 
the current time T. 

 



Most Likely Explanation – task of finding the sequence of states most likely to 
have generated a sequence of observations; ( )

1: 1: 1:arg max |
tx t tP x e . 

• most likely sequence must consider joint probabilities over all time steps. 
• there is a recursive relationship between most likely paths to each state Xt+1 and 

the most likely paths to each state Xt. 
• Recursive formulation: 
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o messages: ( )
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o summation over Xt replaced by a maximization. 
• Pointers are used to retrieve the most-likely explanation 
• Viterbi algorithm has a space and time requirement of O(t). 

 
Learning – task of learning the transition and sensor models from observed data.  This 
process leverages inference through EM. 
 
Hidden Markov Models (HMM) – a temporal probabilistic model in which the state 
of the process is described by a single discrete random variable and transitions obey the 
Markov assumption. 

• transition model: ( )1|ij t tT P X j X i−= = =  

• observation model: ( ) ( ),
|t ti i

P e X i= =tO  

o forward message -  1: 1 1 1:
T

t t t+ +∝f O T f  

o backward message -  1: 1 2:k t k k t+ + +∝b TO b  

o time complexity of forward-backward becomes ( )2O S t  where S is the 

number of hidden states and space complexity is ( )O St . 

 



Kalman Filters – a temporal probabilistic model for continuous state spaces under the 
Markov assumption and using linear Gaussian distributions to model the states.  A 
Kalman filter can model any system of continuous state variables with noisy 
measurements. 

• a multivariate Gaussian distribution can be specified completely by its mean µ  
and its covariance matrix Σ . 

• In general, filtering with continuous or hybrid spaces generate state distributions 
whose representations grow without bound, but the Gaussian distribution is “well-
behaved” since it has the following properties: 

1. If the current distribution ( )1:|t tP X e  is Gaussian and the transition model 

( )1 |t tP +X x  is linear Gaussian, then the predicted distribution of the next 

step is: 

( ) ( ) ( )1 1: 1 1:| | |
t

t t t t t t tP P P d+ += ∫xX e X x x e x  

2. If the predicted distribution is Gaussian and the observation (sensor) 
model is linear Gaussian, then conditioning on new evidence yields the 
updated distribution: 

( ) ( ) ( )1 1: 1 1: 1 1 1 1:| | |t t t t t tP P P+ + + + +∝X e e X X e  

• General formulation: 

( ) ( )( )1 1| ,t t t x tP N+ +=x x Fx Σ x  

• F and xΣ  describe the linear transition model & noise. 

( ) ( ) ( )| ,t t t z tP N=z x Hx Σ z  

• H and zΣ  describe the linear sensor model & noise. 

• Updates: 

( )1 1 1t t t t t+ + += + −µ Fµ K z HFµ  

( )( )1 1
T

t t t x+ += − +Σ I K F Σ F Σ  

 

o Kalman gain ( ) ( )( ) 1

1
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• A measure of “how seriously to take the new observation” relative 
to the prediction. 

o predicted state at t+1 is tFµ , predicted observation is tHFµ , and error of 

predicted observation is ( )1t t+ −z HFµ . 

• Extended Kalman Filter (EKF) – allows for limited nonlinearity in the model by 
modeling the system locally as linear in tx  in the region of t t=x µ . 

• Switching Kalman Filter –  
 
Dynamic Bayesian Networks 
 
Speech Recognition 
 


