Session 10

l. Announcements [5 minutes]

« Homework 4 is online and is due November™4
o Get started early and get ahead of the game.

* Homework 5 is after that and is a programming assignment.

Cheating
The written assignments are to be done individually, the project assignments.in pa

Discussion of assignments among students is permitted and encouraged, but solutions and
programs may not be copied. | would recommend NOT mixing discussion with writing
up of solutions or code.

Overview

Last session we covered an introduction to Bayes Nets and probabilistic ieferenc
Today’s session is a review session focusing on the topics you feel leasttablafor
with. The following topics are fair game for discussion and are relevant to fwwknew
guestions:

1. Separation in Bayes Nets
a. undirected graph separation
b. separation in Bayes Nets
2. Constructing Bayes Nets
a. Building in the Causal direction.
3. Probabilistic Inference on Bayesian Nets
a. joint probability and marginalization.
b. variable elimination
C. junction tree
4. Approximate Inference on Bayes Nets
a. Simple sampling (estimating pi)
b. The Markov Chain
c. MCMC
I. stationary distributions
ii. Metropolis-Hastings?
lii. Gibbs sampler
d. particle filtering?
5. An introduction to temporal structure
a. Markov Assumption
b. Markov model, structure, HMM
c. Kalman Filter
d. Dynamic Bayes Net




. Introduction to Bayes Nets

Structure of Bayes Nets
* The structure of a network contains the essential information about the
conditional independence of the random variables.

* There are many reoccurring structures that capture common assumptions.
o Naive Bayes Model
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(a) conditionally independent features

o Noisy Or Model
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0 otherwise
o Hidden Markov Model
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* These models are very important in a branch of Al known as Statistical Machine
Learning where we try to learn their parameters from observationsl-otodd
phenomenon we assume follow a given model.
0 Inconsistencies between the exact model are often secondary to the effect
captured in the structure of the model.

o Independence assumptions often don’t hold in the real world, but the
models still perform well due to the approximate independence exhibited.




Foundations
* Conditional Independence — implies that two variables X,Y are independent
given variable Z:
P(X,Y|Z)=P(X[Z)P(Y|2Z)  P(X I Z)=P(X E)
» Bayes’ Rule- application of product rule that allows diagnosieliefs to be
derived from casual beliefs:
P(X1Y)P(Y)
P(X)

P(XY.e)P(Y [e)
P(Xe)

P(Y|X)= P(Y|X )=

Chain Rule of Probability Theory — In general,
p(X,, X,,..., X, ) = |‘l P(X; [ X1, X5 X))

Graphical Model — represents the joint probability distributioreowa set of random
variables via the independence relationships betwease variables, thus
concisely encapsulating a family of probabilitydistributions that respect those
independence assumptions.

*» Nodes- correspond in a 1-1 relationship with the vdgabn the
distribution.
» Edges- represent dependence between a pair of randoables. The
interpretation of this dependence depends on wheth&ot the graph is directed.

d-separation —two nodes X and Y in a directed graph are diseed if every path
between X and Y is blocked.
= A path between X and Y is blocked if it has anyha following 3 cases
for any 3 nodes along the path.
 head-to-tail with intermediary observed:|| B|C

« tail-to-tail with intermediary observedA || B|C

* head to head with neither the intermediary norairits
descendants observed:|| B|O

A C A A C B A C B

Bayes Ball Algorithm —an algorithm for determining reachability undguaaticular
definition of separation. In particular, it detenes if there exists a path from set
Xa to set g given that the X are “specified.”
1. Place a ball in all nodes ofaX
2. For each ball in the graph, explore each diredt ga ball could use to
move through some neighboring node; this includasn paths where a
node serves as both origin and destination. Iptta is valid according
to the rules of separation, place a ball at théirtsson.



3. Upon termination, if a ball is in a member of Xhe set is reachable;
return true. Otherwise return false.

Probabilistic Inference — the computation oP (X | X.) for a graphG =(v, ¢)
where F,E Ov index sets such thd&t n E =0 ; disjoint.

0 query nodes Xg; we want to obtain the conditional probabilitytbése.
0 evidence nodesvariables begin conditioned oXs
o remaining nodes Xg whereR=v\(F O E). Must be marginalized!
o marginal P(%. %) =Y P(%. %, %s)
o prior P(x) =D P(%. %)

P(xc,X
o conditional P(x: | %) :M

P(x)

o0 Notes:

» Using the distributive law, factors irrelevant ts@ammation can be
brought outside of it. By associative law, theasrdf sums can
also be swapped.

» Each summation introduces a new factor that hamtrginalized
variable removed but incorporates all other vagahised in that
product.

= Determining the optimal ordering of sums that miizies size of
intermediate terms is, in general, NP-hard.

» Conditioning — the act of basing the probability of the quergde®mon specific
values of the evidence nodes.

o evidence potentiald(x,X ) - potential that is 1 ifx =X ; O otherwise:

Kronecker delta function.
0 evidence potentials transform evaluations into sums

g(X)=;g(>ﬁ)5(>ﬁ,>‘s)

* Continuous Random Variables:
o discretization — dividing variable’s possible values into intdsra
0 parameterization — describing the variable’s distribution by a fenget of
parameters.
o hybrid BN —a BN containing both discrete and continuousaidess.
o conditional distributions for continuous variables:

» discrete parents’ values are enumerated.

» continuous parents’ must be summarized in a digich, for
instance, the linear Gaussian distribution wheramaries
linearly with parents’ value and std dev is fixgd=ax+b.

» linear Gaussian has joint distribution is multiaée Gaussian over
all variables. These are combined with discreteabées in
conditional Gaussians.

o conditional distributions for discrete variablegiwtontinuous parents.



Approximate Inference in Bayesian Networks

* Monte Carlo algorithms — algorithms that approxienatdesired quantity through
random sampling.

» Direct Sampling

* Rejection Sampling

» Likelihood Weighting

* Markov chain Monte Carlo (MCMC) — a sampling teciue that settles into a
dynamic equilibrium such that the long-term fraction of time spern¢ach state is
exactly its posterior probability given certain ddrons.

0 Markov chain — a structure that defines the probability of siianing
from the “current” state to the “next” state.

= transition probability g(x — x') - the probability that the process
transitions from state to statex’.

» ergodic — essentially every state much be reachable frarye
other and there can be no strictly periodic cycles.

= statedistribution 7z (x) - the probability of being in stateat the

t-th step of the Markov chain.
o0 dtationary distribution — a state distribution such that= 7z,

Ox' m(x) =Y m(x)q(x - x)

» This distribution is unique if the chainesgodic.
» A distribution is stationary if it satisfies thietailed balance

Ox, x' m(x)g(x - x")=m(x")q(x" - x)




15: Probabilistic Reasoning Over Time

Modeling Uncertainty over Time
» Setting
0 X, - asetof unobserved state variables at time
0 E -asetof observable evidence variables for time

0 ab - denotes an interval froeto b.
» Stationary Process- process of change that is governed by laws thabd
change over time.
* Markov Assumption — current state depends only ofirgte history of previous
states. Processes satisfying this assumptioklarkov Processes (Chains).
o transition model — law describing how state changes over time.

P(X, | Xo1) =P(X, |X,) wherea O{1...t -1
o first-order Markov Process — current state is solely dependent on the
previous state
= transition model:  P(X,|X,,)

* We assume the evidence variables at tighepend only on the current state.
0 sensor model- law describing how the evidence depends onttie.s

P(E [ X0t Eora) =P(E X))
- prior probability for the initial state:P(X,)
* complete joint

P(Xor,Epr) = |‘JP (X X)) P(EIX)

» Ways to deal with inaccurate Markov modeling:
1. Increase the order of the Markov process
2. Increase the set of state variables

Filter (monitoring) — the task of computing theelief state — the posterior distribution
of the current state given all evidend®{ X; |e ).

* Recursive estimation — forward chaining.
P(X le) DP(& 1X) 2 P(X, 1X02) P(Xy feu-)
—_—

Xt recursive estimate

f,, O FORWARD ( f,_,,&)
* When the state variables are discrete, this updatenstant in space and time.
+ Likelihood P(eLT) can be calculated by a likelihood messdges P(X,,e,):

Zlu T’e:LT



Prediction — task of computing the posterior distribution oaéuture state, given alll
evidence;P (X, |e,) wherek> 0.

» This is equivalent to filtering without new evidencHence, we can easily derive
the following update:

I:)()(thk |elT) = z I:)()(thk |XT+k—l) I:)()(thk—l |elT)
Kook recursive estimate
» stationary distribution — The fixed point of the Markov process that is
approached upon successive applications of theitiam model.
0 mixing time — the amount of time required to reach statioparit
o Prediction is doomed to failure for future timesrsthan a small fraction
of the mixing time.

Smoothing (hindsight) — task of computing posterior distribution fopast state,
given all evidenceP (X, |e;) where0O<k<T.

» Accounting for hindsight is done with an additiobakckwards message:
P(Xler) O P(X, lew) P& 1X,)
fix Beorr

Q<+1:T = z P(Q«l' Xk+1) I:)(Xk+1 | Xk)h<+21’

Xk+1
* The time and space needed for each backward measagenstant.
* Thus, the process of smoothing with respea tois O(t).

« Thus, to smooth the whole sequence naively, resi@i(g).

» using dynamic programming the cost is 00Kf) by recording results of forward
filtering over the entire sequence while running blackward algorithm fror to
1 and use the smoothed message at each timestepvard-backward algo.

0 spaceis noWD(| i |t)

* In on-line setting, smoothed estimates must be cwedpfor earlier time slices as
new observations are added:
o fixed-lag smoothing— smoothing is done for the time sli¢steps behind
the current timd.



Most Likely Explanation — task of finding the sequence of states moshitee
have generated a sequence of observatiangsnax P(x11 pn).
* most likely sequence must consider joint probaegdibver all time steps.
» thereisarecursive relationship between most likely paths to each state X1 and
the most likely paths to each state X:.
* Recursive formulation:

maxP(X,, le,) O P(e [X,) maxP(X, Ki.) maR (X, &)

observation transition

previous message

0 messages: mlI=nX1axP(X11 le, )

0 summation ovek; replaced by a maximization.
» Pointers are used to retrieve the most-likely exgti@n
Viterbi algorithm has a space and time requirenoéQi(t).

Learning — task of learning the transition and sensor nwftem observed data. This
process leverages inference through EM.

Hidden Markov Models (HMM) — a temporal probabilistic model in which the stat
of the process is described bgiagle discrete random variable and transitions obey the
Markov assumption.

« transition model: T, =P(X, = j|X_, =i)
* observation model: (O,), =P(g|X, =i)
o forward message - f,,, 00, T,
0 backward message -b,,,, 1 TO,, b,
o time complexity of forward-backward becom@sészt) whereSis the

number of hidden states and space complexi§(ist).



Kalman Filters — a temporal probabilistic model for continuousetspaces under the
Markov assumption and using linear Gaussian digiobs to model the states. A
Kalman filter can model any system of continuoagesvariables with noisy
measurements.

* amultivariate Gaussian distribution can be specified completely by itsam@
and its covariance matrix .

* In general, filtering with continuous or hybrid sea generate state distributions
whose representations grow without bound, but thesSian distribution is “well-
behaved” since it has the following properties:

1. If the current distributiorP (X, |e,,) is Gaussian and the transition model
P(X..1%,) is linear Gaussian, then the predicted distributibthe next
step is:

P(X..ley)= L P(Xea 1% )P (%, ley)dx
2. If the predicted distribution is Gaussian and thsewvation (sensor)

model is linear Gaussian, then conditioning on egwence yields the
updated distribution:

P(Xt+1 |e11+1) 0 P(en+1| ><t+1) P( )<t+1|el')
* General formulation:

P (% 1) = N(Fx, 2, ) (%)
« FandX, describe the linear transition model & noise.
P(z |x)=N(Hx.Z,)(z)
« HandX, describe the linear sensor model & noise.
» Updates:
neo, =Fpt Kt+1(zt+1_HFut)
Lu=(1K L) FEF 4,

o Kalman gain K, =(FLF"+E,)H' (H(FLF +£,)HT +x5,)"

* A measure of “how seriously to take the new obg@wmarelative
to the prediction.

o predicted state at t+1 Bp,, predicted observation idFp,, and error of
predicted observation ig,,, — HFp,) .

» Extended Kalman Filter (EKF) — allows for limitednlinearity in the model by
modeling the systerocally as linear inx, in the region ofx, = p, .

» Switching Kalman Filter —
Dynamic Bayesian Networks

Speech Recognition



