
Session 1

I. Introduction

Overview
• Hello, and course intro – no cheating, course website, my website, email addr.

http://www.cs.berkeley.edu/~russell/classes/cs188/f05/
http://www.eecs.berkeley.edu/~nelsonb/

• The sections I’m teaching are intended for Cognitive Science majors.
o These sections will attempt to address the concerns of those students.

Since those students haven’t had as much programming experience, I will
try to focus these sections to meet those concerns.

o For the time being, I need you to be understanding of three things:
1. I’m not very good with names, so it may take me some time.
2. This is my first time teaching, so let me know how I can
3. I have my Prelim Exams in 2 weeks, so bear with me.

• My office hours will be: Wed: 3-5 pm 751 Soda
Fri: 10-11 am 751 Soda

• This is an overview course on modern techniques in artificial intelligence.
o The primary textbook for this course is Artificial Intelligence: A Modern

Approach, SECOND EDITION by Stuart Russell and Peter Norvig.
While the 1st edition covers similar topics, they are quite different so get
the 2nd edition – GREEN COVER.

o This class is taught in LISP – a programming language similar to
SCHEME.

� A good introduction and reference book for LISP is ANSI Common
Lisp by Paul Graham.

� An alternative LISP text is available on the web; Common LISP
the Language, 2nd edition by Guy Steele:

http://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html

Names
• Let’s go around the room and introduce ourselves. Please tell me:

o your NAME, YEAR, and MAJOR
o Why are you taking this class?

Notecards
• Finally on the Front of the notecard, please write:

o Your Name and Major
o Email Address
o Programming Languages you are comfortable with.

• On the back,
o Please write a short description of what you want to get out of this section.

II. LISP

LISP References
Besides the books mentioned above, there are some other

• Differences between Scheme and LISP
http://dept-info.labri.u-bordeaux.fr/~strandh/Teaching/Langages-
Enchasses/Common/Strandh-Tutorial/diff-scheme.html

• Scheme vs. Common Lisp – A table of differences between the languages.
http://www.cs.utexas.edu/users/novak/schemevscl.html

• Class LISP Tutorial – how to setup, write, and run LISP in the lab.
http://www.cs.berkeley.edu/~russell/classes/cs188/f05/assignments/a0/lisp
-tutorial.html

• Class LISP notes
http://www.cs.berkeley.edu/~russell/classes/cs188/f05/assignments/a0/lisp
-notes.html

• LISP Function Reference – an online reference for LISP functions.
http://www.cs.cmu.edu/Groups/AI/html/cltl/clm/

Fundamental LISP
• Everything in LISP is a list or an atom, even function calls. Hence, we can,

o Extend the language.
o LISP can be written in LISP.

• Function calls – even function calls are lists
o function name is the 1st element of a list

(fn arg1 ... argn)
o Prefix Notation (+ 1 2 3 4 5 6)
o In normal LISP evaluation, all arguments of a function are evaluated, and

the function is applied to the result.
o Quote Function - passes an argument without evaluation. Abbrev. by ‘

‘(a b c)
• The fundamental element is the Atom – symbols that represent a value.
• LISP stands for List Processor. The fundamental data structure is the list:

 e.g. (A 1 (1 3))
o nil or () is both an atom and a list. Moreover it is also the symbol for

false.
• However (nil) is not the same as nil

o Essential LISP list functions:
• cons – operator that builds a list. e.g. (cons x (cons ‘z nil)) makes:

• Two arguments:
o car – the first element of the list
o cdr – the remainder of the list

• car – operator that returns a list’s 1st element.
• cdr – operator that returns the rest of the list

after the 1st element.

car cdr
cons

car cdr
cons

 x z

Functions
• In LISP, functions are defined by the function defun, which takes >2 arguments

o A name
o A list of argument names
o All other arguments are evaluated and the last evaluated expression is the

return value of the function
(defun sum (args) (apply #’+ args))

• Comments – there are two ways to make comments.
o semicolon (;) – everything is ignored until the end of the line.
o #| … |# - everything between the delimiters is ignored.

• Functional Programming
o As designed, LISP is a functional programming language. In this

paradigm, programs are defined by the return values of their functions
rather than by modifying variables.

o In pure functional programming, no values are modified � there are no
side effects such as,

� printing, incrementing, or setting value.
� One consequence of pure functional programming is that no

operations can modify their arguments, hence, they must copy.
e.g. remove

(remove ‘a ‘(b a n)) returns (b n) but copies those elements
leaving the original list unaltered.

o LISP also has constructs side effects.
� format is used to print

(format t “The number is ~A.~%” x)
� incf is used to increment a variable
� setf is used to set the value of a variable.

(setf x 5)
setf is essential as it can set the value of any symbol including
members of a structure or elements of an array.

• Recursion – one of the building blocks of functional programming is recursion;
the idea of a function calling itself � Factorial.

o Base case – covers the “easy” case where the answer is simple.
o Recursive case – covers the cases where we don’t know how to solve the

big problem directly, but we know how to break the problem into smaller
parts.

• Lambda Function – allows you to define an anonymous function with no name.
(lambda (x) (+ x 5))

o Why would we want “nameless” functions?
� Sometimes you want to make a simple function without the rigor

of defining a whole new function.
� This case comes up often when passing functions as arguments.

o Passing Functions as arguments can be done by referring to the function
name with the #’<function-name>. e.g. (apply #’+ ‘(1 2 3 4))

• Keyword Arguments – some functions take keyword arguments, arguments that
come in name, value pairs where the name is proceeded by a colon. e.g. :test eq

Truth & Equality
• Every value in LISP is considered true except the special symbol nil, which is

considered false.
o This allows functions to return more information than just true/false.

• e.g. member
(member ‘b ‘(a b c)) � (b c)

• In LISP, functions that test whether or not a condition holds are called predicates.
o Predicates are no different from normal functions, but are often named

with a p at the end of the word (e.g. listp tests if its argument is a list).
• Equivalences

o = (= 5 6) – numerical comparison equality.
o EQ (eq x y) – true when x and y point to the same memory location; thus,

to numbers may not be equal (compiler dependent)
o EQL (eql x y) – same as EQ, but compares numbers and characters.
o EQUAL (equal x y) – true if x and y have the same list structure (look the

same when printed).
o EQUALP (equalp x y) – like equal but recursively compares (arrays,

vectors, and structures)
• Many functions use some form of equality to perform their task (e.g. member

looks to see if a particular element is present in a list using equality).
o By default, the equality function used is eql.
o To specify a different equality function, we can use the keyword arg, :test

• Conditionals
o In LISP the fundamental conditional is if :

• It takes up to 3 arguments with an optional else:
(if cond then else)

• if does not use the common evaluation rule of evaluating all its
arguments; either the then or the else is evaluated depending on
cond, but not both of them.

o The case conditional is a multi-way if:
• It has a condition, and a number of possible cases each of which is

a list.
• The 1st element of each list are the values handled by the

clause.
• The remaining elements are the statements to be executed

conditional on the case.
• The generic otherwise case handles all other cases.

Types Hierarchy
• Every value has a type hierarchy. Every value (except nil) is of type t, the generic

type. Every subtype of t is considered true for conditional statements, as
discussed earlier.

o Type hierarchies capture the valid “contexts” of the value.
o For instance, the type hierarchy of numbers is,

Special Functions
• sharp quote (#’) – an abbreviation for function, which returns the function

associated with a given name. This is typically used to pass functions as
arguments.

• backquote (`) – used like quote except we can force evaluations within the quoted
expression:

o To evaluate within a backquote, use a comma. e.g. for x=1,
`(1 ,x) � (1 1)

o To get elements of a list use ,@. e.g. for x = (a b c)
`(1 ,@x) � (1 a b c)

• apply – applies a function to a list of arguments. e.g. (apply #’+ ‘(1 2 3)) � 6
• funcall – applies a function to arguments. e.g. (funcall #’+ 1 2 3) � 6
• mapcar – applies a function to consecutive elements of lists it received as

arguments:
e.g. (mapcar #’list ‘(1 2 3) ‘(4 5 6)) � ((1 4) (2 5) (3 6))

number

complex real

float rational

short-float single-float double-float long-float ratio integer

bignum fixnum

bit

t

atom

Objects
• The primary way we will associate data into a “class” is through the defstruct

function that creates a new type with members.
(defstruct group x y z)

o We can define objects to be a given structure by using the constructor for
that structure, make-<name-of-struct>. This constructor is automatically
created when we create a structure. e.g.

(make-group g)
• this constructor can also take keyword arguments to specify the

initial value for its members. These are named by the member
name: (make-group g :z 1 :x 3) � makes a “group” g with
x-part 3, y-part nil, and z-part 1.

• Any arguments not passed to the constructor are set to nil.
o defstruct also creates a member accessor function to refer to the members

of a structure. e.g. (group-x g) � returns the “x” part of g.
o defstruct also creates a member-predicate to check if a variable is of the

type of that structure: e.g. (group-p g) � returns t
o defstruct also creates a copier function to copy an instance of that

structure: e.g. (copy-group g) � returns a copy of g.
• Slot options

o When defining each member of a struct, we can give a default value, a
type, and define if it is read-only.

(defstruct thing (height 0.0 :type double-float)
 (weight 0.0 :type double-float :read-only t))

• Inheritance & overriding default methods
o When defining a structure, we can cause it to inherit:

(defstruct (person (:include thing)) name)
which causes person to inherit from our thing class.

o In addition, we can also override constructor, predicate, copier, etc.
• To create new methods for a structure, we use the defmethod function.

o This is similar to a defun declaration, but we need to refer to the class the
method operates on. In specifying our method, we therefore pass
arguments of the form (<arg-name> <class-name>):

e.g. (defmethod setx ((p group) x) (setf (group-x p) x))
o While we will be using defmethod to build methods for our structures,

defmethod, it is really just a specialized version of defun that allows
overloading of a function name – a generic function

• defmethod allows several functions to have the same name as long
as they have different argument types.

• To specify argument types, we have argument lists of the form:
((arg1 type1) … (argn typen))

• Thus, we are able to create several functions of the same name:
(defun generic (x y) …)
(defun generic ((x integer) y) …)

• LISP applies the most specific method that matches the arg types.

