Session 1

Introduction

Overview

* Hello, and course intro — no cheating, course website, my website, email addr.
http://www.cs.berkeley.edu/~russell/classes/cs188/f05/
http://www.eecs.berkeley.edu/~nelsonb/

* The sections I'm teaching are intended for Cognitive Science majors.

0 These sections will attempt to address the concerns of those students.
Since those students haven’t had as much programming experience, | will
try to focus these sections to meet those concerns.
o For the time being, | need you to be understanding of three things:
1. I'm not very good with names, so it may take me some time.
2. This is my first time teaching, so let me know how | can
3. | have my Prelim Exams in 2 weeks, so bear with me.
* My office hours will be: Wed: 3-5pm 751 Soda
Fri: ~ 10-11 am 751 Soda

* This is an overview course on modern techniques in artificial intelligence.

0 The primary textbook for this courseAstificial Intelligence: A Modern
Approach, SECOND EDITION by Stuart Russell and Peter Norvig.
While the £'edition covers similar topics, they are quite different so get
the 29 edition - GREEN COVER.

o0 This class is taught in LISP — a programming language similar to
SCHEME.

= A good introduction and reference book for LISRMS Common
Lisp by Paul Graham.
» An alternative LISP text is available on the web; Common LISP
the Language,™ edition by Guy Steele:
http://www.cs.cmu.edu/Groups/Al/htmli/cltl/clti2.html

Names

* Let’s go around the room and introduce ourselves. Please tell me:
o your NAME, YEAR, and MAJOR
o0 Why are you taking this class?

Notecards

* Finally on the Front of the notecard, please write:
0 Your Name and Major
o Email Address
o Programming Languages you are comfortable with.
* On the back,
o Please write a short description of what you want to get out of this section.

I LISP

LISP References

Besides the books mentioned above, there are some other

» Differences between Scheme and LISP
http://dept-info.labri.u-bordeaux.fr/~strandh/Teaching/Langages-
Enchasses/Common/Strandh-Tutorial/diff-scheme.html

» Scheme vs. Common Lisp — A table of differences between the languages.
http://www.cs.utexas.edu/users/novak/schemevscl.html

» Class LISP Tutorial — how to setup, write, and run LISP in the lab.
http://www.cs.berkeley.edu/~russell/classes/cs188/f05/assigna@hts
-tutorial.html

e Class LISP notes
http://www.cs.berkeley.edu/~russell/classes/cs188/f05/assignai@hts
-notes.html

* LISP Function Reference — an online reference for LISP functions.
http://www.cs.cmu.edu/Groups/Al/html/cltl/clm/

Fundamental LISP

» Everything in LISP is a lisbr an_atomeven function calls. Hence, we can,
o Extend the language.
0 LISP can be written in LISP.

e Function calls— even function calls are lists

o function name is the®lelement of a list
(fn argl ... argn)

o Prefix Notation (+123456)
o Innormal LISP evaluation, all arguments of a function are evaluated, and
the function is applied to the result.
o0 Quote Function- passes an argument without evaluation. Abbrev. by
‘(abc)
* The fundamental element is tAbom — symbols that represent a value.
» LISP stands foList Processor. The fundamental data structure is like
eg. (A1(13)
o nil or () is both an atom and a list. Moreover it is also the symbol for
false.
* However (nil) is not the same as nil
o0 Essential LISP list functions:
* cons— operator that builds a list. e.g. (cons x (cons ‘z nil)) makes:
* Two arguments:

o car — the first element of the list _CON: con

o cdr — the remainder of the list |cafcdl—{ca|Cdi—>
« car — operator that returns a list's &lement. l
 cdr — operator that returns the rest of the list 2

after the I element.

Functions

* In LISP, functions are defined by the functideiun, which takes >2 arguments

o0 Aname

o A list of argument names

o All other arguments are evaluated and the last evaluated expression is the
return value of the function

(defun sum (args) (apply #+ args))
» Comments— there are two ways to make comments.
o semicolon (;) — everything is ignored until the end of the line.
0 #| ... |[# - everything between the delimiters is ignored.
* Functional Programming

0 As designed, LISP is a functional programming language. In this
paradigm, programs are defined by the return values of their functions
rather than by modifying variables.

o0 In pure functional programming, no values are modifethere are no
side effects such as,

» printing, incrementing, or setting value.

* One consequence of pure functional programming is that no
operations can modify their arguments, hence, they must copy.
e.g. remove

(remove ‘a ‘(b a n)) returns (b n) but copies those elements
leaving the original list unaltered.

0 LISP also has construcisle effects.

» format is used to print

(format t “The number is ~A.~%” Xx)
* incfis used to increment a variable
» setf is used to set the value of a variable.
(setf x 5)
setf is essential as it can set the value of any symbol including
members of a structure or elements of an array.
* Recursion- one of the building blocks of functional programming is recursion;
the idea of a function calling itset® Factorial.

0 Base case- covers the “easy” case where the answer is simple.

0 Recursive case- covers the cases where we don’t know how to solve the
big problem directly, but we know how to break the problem into smaller
parts.

* Lambda Function — allows you to define an anonymous function with no name.
(lambda (x) (+ x 5))

o Why would we want “nameless” functions?

» Sometimes you want to make a simple function without the rigor
of defining a whole new function.

» This case comes up often when passing functions as arguments.

o Passing Functions as arguments can be done by referring to the function
name with the #'<function-name>. e.g. (apply #+ (1 2 3 4))

» Keyword Arguments — some functions take keyword arguments, arguments that
come in name, value pairs where the name is proceeded by a colon. e.g. :testeq

Truth & Equality

» Every value in LISP is consideréualie except the special symbol nil, which is
consideredalse.
o This allows functions to return more information than just true/false.
* e.g. member
(member ‘b ‘(abc)) > (b c)
* In LISP, functions that test whether or not a condition holds are ¢akdtates.
0 Predicates are no different from normal functions, but are often named
with ap at the end of the word (e.g. listp tests if its argument is a list).
* Equivalences
0 = (=5 6)— numerical comparison equality.
o EQ (eq xy) - true when x and y point to the same memory location; thus,
to numbers may not be equal (compiler dependent)
o EQL (eqgl xy) —same as EQ, but compares numbers and characters.
o0 EQUAL (equal x y) — true if x and y have the same list structure (look the
same when printed).
o EQUALP (equalp x y) — like equal but recursively compares (arrays,
vectors, and structures)
* Many functions use some form of equality to perform their task (e.g. member
looks to see if a particular element is present in a list using equality).
0 By default, the equality function usederyl.
o To specify a different equality function, we can use the keywordtasy,
» Conditionals
0 In LISP the fundamental conditionalifs
» It takes up to 3 arguments with an optional else:
(if cond then else)

» if does not use the common evaluation rule of evaluating all its
arguments; either th&en or theelse is evaluated depending on
cond, but not both of them.

0 Thecaseconditional is a multi-way if:

* It has a condition, and a number of possible cases each of which is
a list.

« The T'element of each list are the values handled by the
clause.

* The remaining elements are the statements to be executed
conditional on the case.

* The generiotherwise case handles all other cases.

Types Hierarchy

» Every value has a type hierarchy. Every value (except nil) is ot tyfpe generic
type. Every subtype afis consideredrue for conditional statements, as
discussed earlier.

0 Type hierarchies capture the valid “contexts” of the value.
o For instance, the type hierarchy of numbers is,

t
|

atom
nulmber
T
complex real
/\
float rational
/\
short-float single-float double-floatlong-float ratio integer
bignum fixnum

Special Functions

e sharp quote (#) — an abbreviation fdiunction, which returns the function
associated with a given name. This is typically used to pass functions as

arguments.
» backquote (*) — used likequote except we can force evaluations within the quoted
expression:
o To evaluate within a backquote, use a comma. e.g. for x=1,

1x)=> (11
o0 To get elements of a list ug®. e.g. forx =(abc)

(1,@x)> (1abc)

» apply — applies a function to a list of arguments. e.g. (apply #+ ‘(1 23p)

» funcall — applies a function to arguments. e.g. (funcall #+ 123

* mapcar — applies a function to consecutive elements of lists it received as

arguments:

e.g. (mapcar#list'(123)'(456)» ((14)(25)(36))

Objects

* The primary way we will associate data into a “class” is througdefstruct
function that creates a new type with members.
(defstruct group x y z)

0 We can define objects to be a given structure by using the consfiarctor
that structuremake-<name-of-struct> This constructor is automatically
created when we create a structure. e.g.

(make-group g)

» this constructor can also take keyword arguments to specify the
initial value for its members. These are named by the member
name: (make-group g :z 1 :x 3) makes a “groupfj with
x-part 3, y-part nil, and z-part 1.

* Any arguments not passed to the constructor are set to nil.

o defstruct also creates a member accessor funicticafer to the members
of a structure. e.g. (group-x &) returns the “x” part ofy.

0 defstruct also creates a member-preditatsheck if a variable is of the
type of that structure: e.g. (group-p-8)returnst

o0 defstruct also creates a copier functiortopy an instance of that
structure: e.g. (copy-group &) returns a copy dj.

» Slot options
o When defining each member of a struct, we can give a default value, a
type, and define if it is read-only.
(defstruct thing (height 0.0 :type double-float)
(weight 0.0 :type double-float :read-only t))
* Inheritance & overriding default methods
o When defining a structure, we can cause it to inherit:
(defstruct (person (:include thing)) name)
which causes person to inherit from our thing class.
o In addition, we can also override constructor, predicate, copier, etc.
* To create new methods for a structure, we useéfmethod function.

o This is similar to alefun declaration, but we need to refer to the class the
method operates on. In specifying our method, we therefore pass
arguments of the form (<arg-name> <class-name>):

e.g. (defmethod setx ((p group) x) (setf (group-x p) X))
o While we will be usinglefmethod to build methods for our structures,
defmethod, it is really just a specialized versiond&fun that allows
overloading of a function name — a generic function
» defmethod allows several functions to have_the saanee as long
as they have different argument types.
* To specify argument types, we have argument lists of the form:
((argl typel) ... (argn typen))

* Thus, we are able to create several functions of the same name:
(defun generic (x y) ...)
(defun generic ((x integer) y) ...)

» LISP applies the mospecific method that matches the arg types.

