
Search 

Terminology 
• search tree (graph) – the path the search algorithm follows in exploring the state 

space via an initial state and a successor function 
o search node – a state from the state space which has a successor function.  

A node is comprised of the following: 
1. state – the state the node represents 
2. parent – the predecessor of the node. 
3. action – the action applied to the parent to reach the node. 
4. path-cost g(n) – the cost of the path from the initial state. 
5. depth – the number of search steps along the path. 

o expanding a node – generating a new set of states via the node’s successor 
function.  A node is not checked to be terminal until it is expanded. 

o Note that several nodes in the search tree may contain the same states, 
generated by different paths.  Hence, the search becomes a graph in state 
space. 

• search strategy – the methodology for choosing the next node to expand. 
• fringe – the collection of nodes generated but not yet expanded. 

o this collection typically imposes an ordering on which nodes in the 
collection will be expanded next based on a preference � queue. 

Assessing Algorithms 
• Performance Measures for our algorithms: 

o completeness – Is algorithm guaranteed to find an existing solution? 
o optimality  – Does the algorithm find the optimal solution first? 
o time complexity – How long does it take to find a solution 
o space complexity – How much memory is needed to find a solution? 

• Relevant quantities: 
o branching factor b – maximum number of successors of a node. 
o d – depth of the shallowest goal node. 
o m – maximum length of any path in the state space. 

• path cost – a function used to define a numeric cost to each path. 
• search cost – the cost required to find a particular solution… typically time 

complexity. 
• total cost – a combination of search cost and path cost according to some tradeoff 

between the two. 
 



Uninformed (Blind) search – search solely on the basis of being to expand the 
successors of a state and being able to distinguish a goal-state. 
 
Criterion BFS Uniform DFS DLS Iterative Bidirect. 
Complete? Yes1 Yes1,2 No No Yes1 Yes1,4 

Optimal? Yes3 Yes No No Yes3 Yes3,4 

Time ( )1dO b +  ( )* /C
O b

ε    ( )mO b  ( )lO b  ( )dO b  ( )/ 2dO b  

Space ( )1dO b +  ( )* /C
O b

ε    ( )O bm  ( )O bl  ( )O bd  ( )/ 2dO b  

 
1. complete if b is finite. 
2. complete if step cost is at least 0ε > . 
3. optimal if step costs are all identical. 
4. if both directions use BFS. 

 
• Breadth-first Search – all nodes at a given depth in the search tree are expanded 

before any of the nodes at larger depths � implemented with FIFO queue 
o complete: if the shallowest goal node is at depth d, it will be found after 

searching over all shallower nodes and other nodes at depth d. 
o optimal if the path cost is a nondecreasing function of depth of a node. 
o Memory requirements of breadth-first search are crippling. 

� Every node must remain in memory � ( )1dO b +  

o Uniformed exponential-complexity searches only can be solved for small 
(trivial) instances. 

• Uniform-cost Search – expands the next unexpanded node with the lowest path 
cost � implemented by a priority queue.  When costs are equal, becomes BFS. 

o complete and optimal provided the cost of every step is at least 0ε > . 
o Let C* be the cost of the optimal solution.  Then the space and time-

complexity is ( )* /C
O b

ε   . 

• Depth-first Search – always expands the deepest node in the current fringe of the 
search tree (search backs-up when path unsuccessful) � implemented by Stack. 

o Incomplete for non-finite search trees.  Always non-optimal. 

� In worst case, DFS will end up exploring ( )mO b  nodes where m is 

the maximum depth of any node. 
o Memory requirement only ( )O bm  where m is the maximum depth. 

o backtracking search – uses only ( )O m  memory by only remembering a 

single successor at each level by having each node “remember” which 
node to generate as next unexplored successor for backtracking. 

� utilizes idea of generating a successor by modifying current state. 



• Depth-limited Search – depth-first search with a predetermined depth limit l.  
Becomes DFS when l = ∞ . 

o incomplete if l d< .  non-optimal if l d> . 

o time complexity: ( )lO b .  space complexity: ( )O bl  

o the diameter of the space provides a good clue about the value to choose 
for l, but it is hard to discover the diameter without solving the problem. 

• Iterative Deepening Depth-first Search – iteratively repeated depth-limited 
search where l is increased by 1 on each iteration from an initial value of 0.  This 
combines the benefits of BFS and DFS. 

o complete when branching factor is finite.   
o optimal when the cost is a non-decreasing function of depth. 
o space complexity: ( )O bd  

o Insight: most of the nodes are in the bottom-most level so repeating upper 
levels is not that bad of an idea. 

� time complexity: ( )dO b … a factor of b better than BFS. 

o In general, iterative deepening is the preferred method of uninformed 
search when there is a large search space with unknown solution depth. 

o iterative lengthening search – iterative search on increasing path-costs 
analogous to uniform cost search. 

� incurs substantial overhead compared to uniform-cost search. 
• Bidirectional Search – simultaneous searches from the initial state forward and 

from the goal state backwards that stop when the 2 searches meet.  Encouraged by 
the fact that / 2 / 2d d db b b+ ≪  

o complete & optimal (with uniform step costs) if both algorithms are BFS. 
o Checking a node for membership in the other search tree can be done in 

constant time via a hash table, but requires that 1 search tree be in 
memory. 

� Time-complexity: ( )/ 2dO b   Space-complexity: ( )/ 2dO b  

o Bidirectional search requires that the predecessors of a node be efficiently 
computable: 

� Easy when actions are reversible.  Otherwise… 
o To deal with several (explicitly listed) goal states, we make them all have 

a successor of a single dummy goal state. 



• Avoiding Repeated States – avoiding repeated visits to states that have already 
been visited could result in substantial savings in space and time.  Algorithms that 
forget their history are doomed to repeat it. 

o repeated states are unavoidable is some problems.  e.g. reversible actions. 
o Repetition Detection usually requires comparing new node to those that 

have already been expanded.   
� Once found, one of the paths to a repeated state can be discarded. 

o DFS can only avoid the exponential proliferation of non-looping paths by 
keeping more nodes in memory. 

o Algorithms can simply remember every state that has been visited. 
� closed list – stores all expanded nodes. 
� open list – stores all nodes on the fringe. 
� In worst-case, time/space is proportional to the size of the state 

space. 
o Optimality 

� Uniform-cost search and BFS (constant step size) are both optimal 
graph-search algorithms 

� Iterative-deepening needs to check if new path is better and if so, it 
must revise costs of all paths going through the altered state. 

Searching with Partial Information 
• Sensorless (Conformant) Problems – agent has no sensors. 

o agent must be able to reason about a set of possible states. 
o belief state – a set of states representing the agent’s belief of what states it 

might be in.  In general, environment of S states has 2S belief states. 
o coercion – executing actions that cause the agent’s belief state to collapse 

to a certain set of states. 
� solution – coercing the belief state to a set of all goal states. 

• Contingency Problems – environment is partially observable or the outcome of 
an agent’s actions is uncertain. 

o adversarial – uncertainty is caused by actions of other agents. 
o contingency plan - trees of decisions made based on the current set of 

percepts made after the last action. 
o Agent can act before finding a guaranteed plan 

� idea of acting and seeing what contingences actually arise. 
� interleaving of search and execution also useful in exploration. 

• Exploration Problems – when states and actions are unknown, agent must 
explore. 



4:  Informed Search and Exploration 
 

• Informed Search – uses problem-specific knowledge beyond the problem’s 
definition. 

• Best-First Search – general Tree (Graph) Search where node’s are selected based 
on an evaluation function f(n) – cost of cheapest path to goal through node n. 

• Greedy Best-First Search – Assumes f(n) = h(n); a heuristic function. 
o susceptible to false starts 
o not optimal; incomplete. 
o Worst case time and space: O(bm). 

 
A* Search – f(n) = g(n) + h(n) where g(n) is the cost to reach the node n and h(n) is a 
heuristic function estimating the cost to a goal through n � estimated cheapest cost 
through n. 

• A* is optimal if h(n) is an admissible (and consistent for Graph-Search) heuristic. 
• A* is complete. 
• If h(n) is consistent, the values of f(n) along any path are nondecreasing! 
• A* searches on contours of cost in the state space. 

o C* is the cost of the optimal solution path 
� A* expands all nodes such that ( ) *f n C< . 

� A* expands some nodes on the goal contour ( ) *f n C= . 

� A* never explores nodes with ( ) *f n C>  � pruned – 

elimination of possibilities without considering them. 
• A* is optimally efficient for any given heuristic since any algorithm that doesn’t 

expand a node n with ( ) *f n C<  might miss the optimal solution. 



Heuristic Functions 
• Heuristic Function h(n) – estimated cost of cheapest path to goal through node n. 
• Admissible Heuristic – h(n) never overestimates the cost to reach a goal. 
• Consistent (Monotonic) Heuristic – h(n) is not more than the cost through n to 

n’ plus h(n’).  Thus, a general triangle inequality: 

( ) ( ) ( ), , ' 'h n c n a n h n≤ +  

• Effective Branching Factor (b*) – the branching factor of a uniform tree of 
depth d with N+1 nodes would have to have given that A* has generated N nodes 
with depth d. 

• Dominance – a heuristic h1 is said to dominate another heuristic h2 if, for any 
node n, ( ) ( )1 2h n h n≥ . 

o A heuristic will never expand more nodes in A* than any other heuristic it 
dominates. 

o Every node surely expanded by search with A* under the dominant 
heuristic will also surely be expanded by the dominated heuristic. 

• Relaxed Problem – a problem with fewer restrictions on the actions allowable in 
the problem domain. 

o The cost of an optimal solution to a relaxed problem is an admissible 
heuristic for the original problem! 

o The “relaxed problem” heuristic must obey the triangle inequality, hence it 
is consistent. 

o The relaxed problem must be easily solved to be used as heuristic. 
• MultiHeuristic: if we have a set of heuristics { }ih  we can combine them into a 

single heuristic: 

( ) ( ){ }maxi ih n h n=ɶ  

o if { }ih  is admissible, hɶ  is admissible. 

o hɶ  is also consistent and dominates each of its components. 
• Pattern Databases – a database of solutions to every subproblem. 

o Disjoint Pattern Databases – sum of costs of two subproblems is a lower 
bound on the cost of solving the entire problem. 

o The solution cost of a subproblem can thus be used to form an admissible 
heuristic. 

• Learning Heuristics – learn a heuristic from experience in solving problem 
repeatedly. 

o use inductive learning algorithm to construct a function h(n) that can 
predict cost of other states that arise in search. 

o typically use features of a state that are relevant to its evaluation.  e.g. 
linear combination of features. 

 



Local Search 
� Local Search Algorithms – When the path to reach goal is irrelevant, local 

search are methods for only maintaining current state and (generally) only 
moving to its neighbors.  Often used in optimizations where the goal is to 
minimize a objective function. 

• Advantages: 
1. small memory requirement 
2. reasonable solutions in large spaces 

• state space landscape – the space of possible states defined by a “location” 
corresponding to state and a “elevation” corresponding to an evaluation, cost, or 
objective function. 

• complete local search – always finds a goal (if any exist) 
• optimal local search – always finds the global min/max. 
• greedy local search – moves to “good” neighbor without considering future. 

 
• Hill-Climbing Search  – Always moves in “uphill” direction to maximize 

objective only searching amongst immediate neighbors of current state and 
terminating when no improvements can be made � greedy. 

o Problems 
� Local Max/Min 
� Ridges 
� Plateaux 

o sideways moves – moves along “flat” objective to get off plateau. 
o Stochastic Hill Climbing – random uphill moves where probability of 

choice depends on steepness of climb. 
o First-Choice Hill Climbing  – generate successors until one is better than 

“current” and take it. 
o Random Restart Hill Climbing – succession of hill climbs with random 

initial state.  If probability of success is p, expected number of restarts is 
1/p. 

o NP-hard problems typically have exponential number of local min/max.  
 

• Simulated Annealing – Hill-Climbing with random walk thus giving efficiency 
and completeness. 

o Candidate move β is randomly selected.  If candidate is uphill, it is always 
accepted.  Otherwise, it is accepted with a probability exponentially 
decreasing with “badness” E∆  and decreasing as temperature T is 
lowered � Boltzmann Distrubution. 

( ) ( ){ }( )1 min 1,exp /tP n E Tβ β+ = = ∆  

o If the schedule for T cools “slowly enough”, simulated annealing finds 
global optimum with probability approaching 1. 

 



• Local Beam Search – maintains the k “best” successor states; an approach more 
powerful than k independent searches since information effectively passes 
between the “search threads.” 

o Stochastic Beam Search – chooses next k states at random with a 
probability of a state as an increasing function of the states value.  This 
approach helps alleviate “lack of diversity.” 

 
• Genetic Algorithms – A variant of stochastic beam search in which successors 

are generated through combinations of 2 current states. 
o population – the k states maintained by the algorithm 
o individual  – an instance in the state space. 
o fitness function – an evaluation function that returns higher values for 

better states. 
o Essence of Algorithm 

� Parents are randomly selected with probabilities related to their 
fitness.   

� Crossover points are selected randomly in accordance with the 
rules of the state. 

� Random Mutation occurs in each successor with some small 
probability. 

o Schema – a substring (representing state) in which some positions of state 
have been left unspecified.  Instances are strings that match a schema. 

� If the average fitness of the instances of a schema is above the 
mean, then the number of instances of that schema within the 
population will grow over time. 

� GA’s work best when schema correspond to meaningful 
components of the solution. 

 



• Continuous Spaces 
o Gradient Descent (Ascent) – moves the current solution in the direction 

of the gradient in the state-space landscape. 

Gradient - 
1 2

, , ,
n

f f f
f

x x x

 ∂ ∂ ∂∇ =  ∂ ∂ ∂ 
…  

Update -  ( )fα← + ∇x x x  

� Gradient is local, not global direction. 
� empirical gradient – estimation of gradient for non-differentiable 

objective function by calculating f in a close neighborhood around 
x. 

� If step size α is too small, too many steps are needed.  If it’s too 
large, the steps overshoot the extrema.  Line Search dynamically 
chooses α in some scheme. 

o Newton-Raphson Method 
� Newton’s Method for iteratively finding roots: 

( ) ( )/ 'x x g x g x← −  

� To find min/max, we need to find roots of gradient: 

( ) ( )1
f f−← − ∇x x H x x  

where 
2

ij
i j

f
H

x x

∂=
∂ ∂

; the Hessian 

o Constrained Optimization – an optimization in which solutions must 
satisfy hard constraints for the values of each variable. 

� linear programming – constraints must be linear inequalities 
forming a convex region and objective function is linear. 



Online Agents 
� Online Search – agent interleaves action and computation by taking actions and 

observing environment to determine result of the action. 
o Online search necessary in exploration where states and actions are 

unknown. 
o Essentials: 

� Action(s) – returns actions for state s. 
� step-cost function c(s,a,s’) – determines cost of step s to s’ by way 

of action a. 
� Goal-Test(s) – determines if s is a goal. 

o competitive ratio – comparison of cost of path that agent actually travels 
to the cost of the path of the agent would travel if it knew the search space 
a priori. 

o No algorithm can avoid dead ends in all possible search spaces � 
Adversarial Argument. 

o safely explorable state space – space in which every state can reach some 
goal state eventually. 

o Hill-climbing is already a local search 
� local minimum can be dealt with via random walks. 
� estimated cost to reach cost through neighbor s’ is the cost to get to 

s’ plus the estimated cost to reach the goal from there (updated): 

( ) ( ), , ' 'c s a s H s+  

� optimism under uncertainty – encourages agent to explore new 
paths by giving new states least possible cost. 

 


