
CS 188 Week 14 12/4/2005

21: Reinforcement Learning

Reinforcement Learning (RL) – the task of using observed rewards to learn a
(approximately) optimal policy for an environment by choosing an action that will
maximize the expected reward given the current observed state of the agent.

• Reward (Reinforcement) – feedback that differentiates between good and bad
outcomes; thus allowing the agent to make choices.

• RL builds on the studies of animal psychologists in differentiating between
reward and other sensory inputs.

• Unlike MDPs, RL agents assume no prior knowledge of either the environment or
the reward function.

• In a sense, the RL task encompasses all of AI: an agent is placed in an
environment where it must behave successfully.

• Three types of agent designs:
o utility-based agent – learn a utility function for states, which the agent

will use to select actions in order to maximize expected utility.
� requires an environment model to map actions to successor states.

o Q-learning agent – learns a utility function on the state-action pairs; a so-
called Q-function.

� able to compare actions without knowing their outcomes.
� without knowing action outcome, look ahead is not possible.

o reflex agent – learns a policy that maps states to actions.

Passive Reinforcement Learning – the agent’s has a fixed policy π: perform
action ()sπ in state s. This is similar to policy iteration, but we lack the transition model

(), , 'T s a s and the reward function ()R s . Thus, the agent performs a set of trials and

uses the observed rewards to estimate the expected utility of each state ()U sπ . Starting

in state s we want to estimate the (discounted) expected reward from future states:

 () () 0
0

E | ,t
t

t

U s R s s sπ γ π
∞

=

 = =  ∑

• Direct Utility Estimation – the utility of a state is the expected reward starting
from that state, so each trial is a sample for each state visited.

o In this setting, the problem becomes a supervised learning problem of
mapping state to value � an inductive learning problem.

o This Monte-Carlo approach assumes independence of the utility function
between states. This ignores the fact that utilities are coupled in the
Bellman equations! Thus, this approach does not bootstrap!

� Without bootstrapping, invaluable information for learning is lost
and thus the technique converges very slowly.

CS 188 Week 14 12/4/2005

• Adaptive Dynamic Programming (ADP) – as the agent moves through the
environment, the transition model is estimated and the MDP for the corresponding
model estimate is solved incrementally using dynamic programming.

o Learning the environment:
� The transition model (), , 'T s a s is estimated from the frequency

from state s to state s’ via action a.
o The MDP is solved using policy iteration or modified policy iteration.
o ADP is intractable for large state spaces.
o approximate ADP – bounds the number of adjustments per transition.

� prioritizing sweep heuristic – prefers to adjust states whose
successors have recently had a large utility adjustment.

• Temporal Difference (TD) Learning – a mixture of sampling and constraint
bootstrapping in which the values of the observed states are modified to reflect
the constraints between states given by the MDP.

o TD equation: given a learning rate α we update the expected utilities:

() () () () ()()'U s U s R s U s U sπ π π πα γ← + + −

The TD equations converges to the MDP equilibrium even though only
visited states are considered – the frequency of visits to a state are a
substitute for the explicit transition model.

o TD is an efficient approximation of ADP:
� the utility function is updated by local adjustments.
� TD only adjusts w.r.t. the observed transition and only makes a

single update per transition.

Active Reinforcement Learning – policy is no longer fixed; active agents must
decide on actions to take.

• Exploration
o greedy agent – follows the current “optimal policy” according to the

current estimates of the utility of each state.
� unlikely to converge to the “optimal policy” since neglected states

have poor estimates of their utility functions.
o Trade-off between exploration and exploitation

� exploitation – utilizing current knowledge to perform actions that
maximize rewards.

� exploration – trying suboptimal actions with the hope of
improving our current estimates for the utility function.

� n-armed bandit – a slot machine with n-levers – gambler must
choose to exploit the lever with highest payoff or explore other
levers to better estimate their payoff.

• Gittins index – a measure of this tradeoff in independent
situations (doesn’t extend to sequential decisions).

CS 188 Week 14 12/4/2005

o Greedy in the limit of infinite exploration (GLIE) – exploration
schemes that are eventually optimal.

� simple GLIE scheme – try a random action with probability 1/ t ;
otherwise, perform the optimal action.

� optimistic utility estimates that favor unexplored states:

() () () () ()
'

max , , ' ' , ,
a

s

U s R s f T s a s U s N a sγ+ + = +   ∑

• U + is the optimistic utility function
• (),N a s is the # of times action a is done in state s.

• exploration function (),f u n - trade-off between greed and

curiosity that must increase in u and decrease in n. e.g.

(), eR n N
f u n

u otherwise

+ <
= 

• policy converges quickly while utility estimates converge
slowly, but all we need is correct policy!

• Action-Value Function
o TD-learning can be adapted to the active setting simply by choosing an

action based on the current U estimate via 1-step look-ahead. However,
we still have to learn the environment model to select actions.

o Q-learning – learns an action-value representation instead of utilities.
� Q-values: () ()max ,

a
U s Q a s=

� model-free – does not require an environment model for learning
or action selection.

� Bellman equations for Q-values:

() () () ()
'

'

, , , ' max ', '
a

s

Q a s R s T s a s Q a sγ= + ∑

� TD Q-learning: (model-free)

() () () () ()()
'

, , max ', ' ,
a

Q a s Q a s R s Q a s Q a sα γ← + + −

• TD doesn’t enforce consistency between values by using
the model so it learns slower!

o knowledge-based approach – method of representing the agent function
by building a model of some aspects of the agent’s environment.

� Has definite advantages over model-free learning agents as the
environment becomes more complex.

CS 188 Week 14 12/4/2005

Generalization in Reinforcement Learning – we now consider methods for
scaling RL to worlds with enormous state spaces. Standard tabular RL is impractical
since the table has one entry per state and since most states would be visited rarely.

• function approximation - representing the value function in (approximate) non-
tabular forms, e.g., a linear combination of features of the state:

() () ()1 1
ˆ

n nU s f s f sθ θ θ= + +…

o Thus we want to learn the parameters 1, , nθ θ… to best approximate the

value function. Note: features can be non-linear in the state variables.
o Function approximation allows the agent to broadly generalize between

many states via states’ common attributes.
o Unfortunately, the best utility function may be a poor estimate!
o Online learning updates (Widrow-Hoff or Delta Rule): uses derivatives

of squared error to update parameters.

() ()() ()ˆ
ˆ

i i j
i

U s
u s U s θ

θθ θ α
θ

∂
← + −

∂

� TD update: () () ()() ()ˆ
ˆ ˆ'i i

i

U s
R s U s U s θ

θ θθ θ α γ
θ

∂
← + + −

∂

� Q: () () ()() ()
'

ˆ ,ˆ ˆmax ', ' ,i i
a

i

Q a s
R s Q a s Q a s θ

θ θθ θ α γ
θ

∂
← + + −

∂

o These updates converge to the optimal estimate for linear functions, but
can wildly diverge for non-linear ones.

• Function approximation can also be used to estimate the environment model:
o in observable models, this is a supervised task.
o in partially-observable models, DBNs with latent variables can be used.

