Reinforcement Learning

IS0 | 1 70T L8 Td 1o] o AP T TP PPPPPPPPP 2
2: Evaluative FEeUDACKccoo o e 3
3: The Reinforcement Learning Problem ... 6
4: DYNamiC ProgrammMingcoooeiiiiiiuiiiiiiiaaaee e e e e e e e e eeeeeeeesaasasaa s e s s e e e e eeeaaeeeeeeesssennnnns 11
5: Monte Carlo MEtNOASuuuuiiiiiiiiiiiiii e 14
1Y/ [o] 01 (= O o [0 PSSR 14
6: Temporal-Difference LearniNguuuuuueiiiiiie e eeeieeeeeeeeiiess s s e e e e e e e e e e eeeeeaneennnne 17
Temporal Difference (TD) Learningccoovieiiiiiiiiiiiiiiiiee e 17
8: Generalization and Function APProXimationccevveeuuiieiiiiiiiee e e e eeeeeseeeeeennnnnns 20
fUNCLION @PPIOXIMALION ... e e e e e e e e e e eeeeeeeeenes 20
Gradi@Nt DESCENT.uuiieiiiiiiiit ittt e e e e e e e e e e e e e e e e s s s bbb bbb e aee e 21
LIN@AI METNOUS ...ttt e e e e e e e e e e eeeeeeeeee 22
FEALUIE MELNOUS:ttt a e e e e e e e e e 22
Control with Functional ApproXimation............ccueeeiuiiiiiiiiiiiaae e 24
10: CASE STUAIES ...ttt e e e ettt b et e e e et e e e e e e e e e e e e e s e e e aannann 25
LD R €T Ty o1 0 o o [P PP 25
SAMUEDIS CRECKEISt 26
TRE ACIODAL ... et a e e e e e 26
Elevator DISPatCRING........oovviieiicr e e e e e e 27
Dynamic Channel AllOCALION.iiii e 28

JOD-Shop SChedUliNguueii e 29

1: Introduction

* Reinforcement Learning —Goal-directed learning from interaction with an
environment formulated as how to map situations to actions so as to maximize a
numerical reward signal using a complete, interactive goal-seeking agent.
formulation must include sensation, action, and goal.

o

Exploration vs. Exploitation — A reinforcement learning agent must
prefer actions that it has tried in the past and found to be most effective
(exploitation), but to discover such actions, it must try new actions that
have never been tried before (exploration).
Policy (s) —defines the way in which a learning agent acts in a specific
situation.
Reward Function R(s,a) —defines the goal of the problem by mapping
each state-action pair of the environment to a specific number — the
reward — that is an indication of the desirability of that pair.
Value Function V(s) —specifies a long-term desirability. An
approximation of the amount of expected reward an agent can gain in
starting from a specific state.
Model — mimics the behavior of the environment (ie given a state and
action, it tries to predict the next state and action).
= Models are used fglanning — deciding a course of action by
considering possible future situations before actually experiencing
them.
We seek to maximize value not rewards. Rewards are given directly from
the environment whereas values must be continuously reestimated.
How well a reinforcement learning algorithm works in problems of large
state sets is tied to how approximately it can generalize from past
experience.
evolutionary methods —-methods that search in the space of policies
directly without ever appealing to the value function (genetic algorithms,
simulated annealing, etc).

2: Evaluative Feedback

Increment Update Rule: A new estimate of a quantity is obtained fromahe ol
estimate, the target value, and a step size on the interval [0,1]:

NewEstimate OldEstimate Step$izarget- OldEst]

error of estimate

Instructive Feedback— Feedback independent on the action taken. For instance,
the feedback might say what the correct action#asupervised learning.

o The problem facing a supervised learning system is to construct a mapping
from situations to actions that mimic the correct actions specified by the
environment and generalize correctly to new situat®nisehave as
instructed by its environment.

o Works well for deterministic rewards. Not so well with stochastic
rewards.

o0 Any method that takes success as an indication of correctness can easily
becomes stuck choosing the wrong action in the stochastic case.

0 Linear, reward-penalty (Lr-p) — if the action inferred to be correct on
playt wasd;, then the probability of selectimy 77(d;) is updated as an
incremental update:

7a(d) =7 (d)+a[1-7(d)]

whereas probabilities of other states are updated inversely.
0 Linear, reward-inaction (L r) — Identical to k-p except it updates its
probabilities only upon successful plays. Failures are entirely ignored.

* Evaluative Feedback- Feedback that depends on the action taken.

* n-Armed Bandit — The agent is repeatedly faced with a choice of between n
different options (actions). After each choice you receive a numengatde
chosen from a stationary distribution that depends on the action. The agent wants
to maximize expected total reward ovg@lays. NOTE: this is a stationary
distribution. To address the non-stationary task, we have associative
reinforcement learning.

0 greedy action —action whose estimated value is the greatest.

0 exploiting —choosing the greedy action in order to receive the expected
largest reward.

0 exploring —choosing a non-greedy action in order to improve the estimate
of the non-greedy reward.

o0 supervised methods perform poorly as they do not balance between
exploration and exploitation at all.

* Action-Value Estimation Methods

0 sample average- averaging over all rewards received upon applying
actiona that was usekl, times. In the limit ak, goes to infinity, by law
of large numbers, the sample aver@g@) converges to the true value

Q (a):

Qt(a)=kik2ari

a i=1
wherer; is the reward received from tin¢h application of action
a

o incremental (decaying) averages averaging by a decaying update based
on the incremental update rule:

Qk+l(a): Q<(a)+ak(69[kea ™ Q<(6)]
a,(a)0[0.]

For constanty, this is aexponential, recency-weighted averaiye
decaying average, that gives more emphasis torpiioa > 1

and more emphasis on recent reward a2 O.

For a, (a) =1/k, this is equivalent to the sample-average, wtsch i

guaranteed to converge@(a).
Stochastic Approximation Conditions— For an arbitrary

sequencq a, (a)} , Q(a) converges t®'(a) with a probability 1,

with the following conditions:
1. Large enough to overcome initial values and random
fluctuation:

> a(a) =

2. Small enough to assure convergence:

S az(a) <eo
k=1

» Action Selection Methods
greedy action: a =argmax Q (a)
o Greedy Policy— always chooses the greedy act®.

0 &-Greedy Policy— chooses the maximal actia, with probability1-¢,
but with probabilitys chooses another non-greedy action.

Sincek, goes to infinity for alla ast goes to infinity, we still get
convergence oy(a) to Q (a).

More variance in rewards favors aiGreedy policy over a pure
greedy policy since more exploration is needed.

Would be advantageous to decreass time gets large since there
is less uncertainty in the value of actions.

£ parameter chosen as a confidence.

o0 Softmax Policy— Chooses actioaon thet-th play according the Gibbs
(Boltzman) distribution.

e
7(a)= @i
Q (b)/T
Zb=1e
whereris a temperature parameter: higher = more random

= Gives more or less favoritism to actions basecdheir telative
value estimations.

» Hard to estimate parameter.
Optimistic Initial Values — By initializing the initial values of an action-vad to
a non-zero valueoptimistic initial value} we are essentially able to incorporate
prior knowledge into the agent causing even a gteedy approach to perform
more exploration, albeit temporarily (hence, ndphé in a non-stationary case).
Reinforcement Comparison Methods -methods that judge whether a given
reward is small or large compared to other rewardss making the search for
large rewards relative to those previously seen.

o reference rewardT, —an incremental average of all recently received

rewards, independent of which action was taken:

h,=h+ C)’[I’t _r_t]

o action preference p(a) —the preference for action a at play t; an
incremental average:

Pa(a)=n(a),+Ar-1]
0 action selection probability —a softmax function giving the probability
of selecting an action:
() en(d)
) =& o)
zb:len()
Pursuit Methods —maintains both action-value estimates and actiefepences,
with the preferences continually “pursuing” theiaetthat is greedy according to
current action-value estimates.

0 After thet-th play the greedy action for thel-th play isa;,,. The
probability of selectingg,,, = a,, is (as in the kp),

77;+1(a:+1) =74 (q*+1) +IB|:1_77{ (é[+l):|
and for all other actions,

n[-+1(a[+1):n['(at+l)+ﬂ|:o_nt-(Q+1):| Q+1¢ é‘+1
0 Qw1(a) action-value estimates are updated from an ab@tkod.
Associative Search the task of botlsearchingfor the best action and
associatingactions with the situations in which they are best
0 in a general reinforcement problem, there are plelSituations and the
goal is to learn @olicy: a mapping from situations to actions that are bes
in those situations.
o this addresses the problem when the bandit taskgelsarandomly from
play-to-play but we have indications about whak tas are tasked with.

: The Reinforcement Learning Problem

* Agent —the learner and decision maker.

* Environment — everything external to the agent.

» Task —a complete specification of an environment

» State 5 U S - the representation of the environment the ageseives at time.

- Action a 0 A(s) —a choice made by the agent based on its stateet t

* Reward r,, R —a representation of the goal achieved by the atjgnto its
action at time.
« Policy 7z (s, a) —the probability thag = a given thats = s, thus defining the
agent’s method of choosing actions for a state.
* Goal —maximize the total amount of reward received.
* Agent/Environment Boundary —the boundary between the agent and
environment is often not the physical boundary Hegtarates them.
o0 The general rule is, anything that cannot be abiyrchanged by the
agent is in the environment.
o The agent-environment boundary is the limit ofélgent’s realm of
absolute control; not the limit of its knowledge.

Agent

\A 4

reward action a
state s

le+1

)

S+1{Environment

>
<

* Goals and Rewards
0 At each time step the reward received by the agent;isOur agent seeks
to maximize the total amount of reward received.
o We want to define rewards in such a way that maaiingithem will cause
the agent to achieve our goals.

» Goals should indicatd/HATyou want to achievéyOT HOWyou
want to achieve it. Hence, rewards should notdsesl o impart
prior knowledge of how the agent should act.

o0 Rewards are computed in the environment ratherithtre agent.

» Agent’s goal should be to maximize a quantity owvbich it has

imperfect control.
* Returns

0 Return — a specific function of the reward sequel{lqé. The agent seeks

to maximizes the expected return. The followinthis general
formulation of the (discounted) reward.

T
R = Zykr{+k+l
k=0

O<y<1
» T can be infinite (continuing task) or tdescount rateycan be 1
(episodic task) but not both.
» If y=0, the agent isnyopic (greedy)— only maximizes
immediate reward.

» |f y21, the agent becomes farsighted and approaches the case of
a simple sum of the rewards (episodic).

If r¢ is bounded bymaxandy< 1, R is bounded:

< ﬂ
R=i- v

o Continuing Tasks —an agent-environment interaction that continues
without limit.

o Episodic Tasks —an agent-environment interaction that can be
decomposed into subsequences of repeated elerapisisges Each
episode has a spectafrminal statefollowed by a restart in one of the
environment’s start staes. Given episotlaat has elapsed for tinewe
index it's states, actions, etc. with a index (fgiy. e.g.a;.

= Can be represented as a continuing task by making rewards after
the terminal state 0 and making the terminal statbanrbing
statethat transitions only back to itself.
The Markov Property

0 States is a representation of information available to the agent attime
There is no reason to limit state only to the immediate sensations but
rather, in general, state should incorporate all relevant knowledge
available.

o Not all relevant or useful information is available to the agent — hidden
state information.

o lIdeally, the agent should never forget relevant info, so the state must be
able to represent the past compactly yet retain all the relevant parts.

o0 Markov State — a state that retains all relevant information from the past.
This induces an independence of path assumption since only current state
signal is relevant:

p(sa= 8 = ri{s 2,)= H 8= $.n= Mls

= Allows us to simply compute the next state and etqeereward
given the current state and action.

» Given a Markovian system, the Markov states ard#s possible
basis for choosing actions.

» Even for non-Markovian systems, assuming it is Mar&n often
leads to good predictions and action choices.

o (finite) Markov Decision Process (MDP) -a reinforcement learning task
that satisfies the Markov Property. If state actiba spaces are finite, the
MDP is finite. The MDP simply specifiggansition probabilities :

» Given any state s and action a, the probabilithhefnext state
being s’ is,

Pi=p(s.=3l$= sa p
» Given current state s and action a and the nete stathe
expected reward is,
R, =E[r.ls=sa=as= §
» A transition graphcan summarize the dynamics of a finite MDP
» state nodes — open circles representing a state
* action nodes — closed circles corresponding tate-stction
pair.
* transitions — each transition goes from a stdtea states’
through an action for stage It is labeled byP;, and R, .

Value Functions — estimates of the desirabilitg state (or state-action)
o value functions define a partial ordering over giek; that isrz< 77" iff

OsO0S V(3= V(&
= optimal policy 77 - a (set of) policies such that< 77 for all other
policies iz
0 state-value functionV”(s) — the expected return an agent following

policy /rhas in stats:
VI(9=E[RIs= =3 o=
= Bellman equation:
Vi(9=27(s 43 B[Bty V(3]

» optimal state-value function:
V' (s)=maxV"(g

» Bellman optimality equation:

V(9 =maxy B[Rty V(9]

0 action-value function Q”(s, a) —the expected return an agent following
policy /rhas for taking action in states:

Q"(sd=E,[Rls= sa p E,[;karH | &= s.& }
= Bellman equation:
o(sd=3 Bf RerSln(s 9 o s]

» optimal state-value function:
Q(sd=max(s 3
» Bellman optimality equation:

Q(s9=% & Rerymax Q(8 9]

o0 Backup Diagrams —show how an update (backup) operation transfers
value information back to a state (action-statejnffuture plausible
actions/states.

» Full Backup —each iteration of the iterative policy evaluation
backs up the value of every state once to produnmaa
approximationv,,, for each. e.g. DP methods use full backups.

» Sample Backup- considers only a single sample successor rather

than the complete distribution of successors imglealue
estimates. e.g. MC and TD methods use sample packu

S S,a ”
taken with Svn(s) SQ (S a)
probability 7z (s, a) "——_ NG
<~ Q'(sd <="V7(9)
a 2% 3 S) S2 S3

= backup diagram for Yand V:

S S
£n KX
a a
r, r
oo O

= backup diagram for ®and Q:

S,a

o0 Solving Bellman optimality equations
= For finite MDPs, Bellman optimality d¢ ”(s) has a unique
solution in that for N states, we have N equations unknowns;
hence, we can solve with a nonlinear equationsesolv
= Given we can solve far’ (s), any policy that is greedy w.r.t.

V' (s) is an optimal policy since V accounts for futuesvards.

» |n practice such solutions require 3 assumptions:
* We accurately know the dynamics of the environment
* We have the computational resources for the system
» The Markov Property is applicable.
* |n most applications, solutions can only be appr@ated as one or
more of these assumptions is violated.

= Often there are so many states/actions that aaalepresentation
of state and state-action functions are infeasihtkparameterized
functions must be used to approximate.

» Prediction — the problem of predicting the value of states actions, which are
used to produce an optimal policy. Three diffeigarieral approaches are
considered:

o Dynamic Programming uses Bellman optimality taking an expectation
over all possible actions possible from a stateboatstrapping approach.

0 Monte Carlo— uses the law of averages to approximate theeMailoction
using sampling.

o Temporal Difference- uses a combination of bootstrapping and sampling
to perform prediction.

4: Dynamic Programming

Dynamic Programming —a collection of algorithms that can be used to cati@p
optimal policies given a perfect model of the eomment as dMarkov Decision
Procesg{MDP) by utilizing the process gfeneralized policy iteratio(GPI).
o Requires a model of the environment
* next-state probability distributior;,

= reward probability distributionR,
Policy Evaluation (Prediction) —the process of computing”(s) for all states
s, for a particular policyz

V(9 =2(s 43 B[R+y V(Y]

o lIterative Policy Evaluation —calculates successive approximatidfs

from the previous value d&f, such thaty, -~ V" ask — « by the
following update'

Vk+1 Z SE)Z [ng+y\(3}

* |n place algorlthm —only a single array is used fof andV,,,,
thus using new values instead of old ones for dekiyps of some
states; still converges, sometimes even fasterftiibbackup.

0 Termination — test the quantitynax,s|V,., (s) - Vi(9| after each sweep

and stop when it is sufficiently small.

0 bootstrapping -the process of using previous value estimatestfoar
states to update the value-state estimates ofea stais is the core of
policy evaluation.

Policy Improvement —The process of finding better policies based orviiee

functionV”(s) by making the policy greedy with respecté(s).

Q(sd=X [Ry V(9]

o Policy Improvement Theorem—Let 77and 77 be any pair of
deterministic policies such that, for &l S,

Q" (sm(9)= V(3.
Then the policy? must be as good as, or better thanThat is, it must
obtain greater than or equal expected return frdhstatess] S:
CEAE
Moreover, if there is strict inequality in the firsquation for any state,
there must be strict inequality in the second foe or more states. Thus
if Q"(s a>V7(9, the changed policy is indeed better thvan

o Policy improvement considers changes at all posstates to all possible
actions and selects a new greedy policy by theviolg:

' =argmax » P [R+ V7 (s)]

= If the new policysr' is as good but not better than the old policy
mthanV”™ =V” = the policy is optimal.
o Policy improvement can also be extended to stoithpslicies:

Q"(sm(9)=% (53 O s

Generalized Policy Iteration —the process of using interacting policy evaluation
and policy improvement processes to achieve Bellpsimality.

0 The value function stabilizes only when it is catesnt with the current
policy while the policy stabilizes only when itgseedy with respect to the
current value function. Evaluation and Improventbeteby act
orthogonally; making the policy greedy w.r.t. thedue function makes the
value function incorrect while making the valuedtion consistent with
the policy makes the policy non-greedjjogether the two processes
achieve overall optimality though neither attemgsimality directly!!!

evaluation

vV o V”
Tt

Vv

improvement
o

o
o
T < ~ V'

o Policy Iteration - Uses alternating full policy evaluation and pgli
improvement until convergence occurs.

o Value Iteration - Uses alternating policy evaluation and policy
improvement, but only a single sweep of each duegch pass.

Via (9) = maxaz R Rety Vi 9]

= still guaranteed to converge to Mnhder the same conditions that
guarantee existence of V

» Faster convergence often achieved by using mukipkseps of
policy evaluation, although not necessarily congktaluation.

o0 Asynchronous Dynamic Programming -in-place DP algorithms that
back up the value of states in any sequence afypelialuations and
improvements.

» For 0< y<1, asymptotic convergence to V& guaranteed only if

all states occur in the sequer{<$} an infinite number of times.

= Allows us to run an iterative DP algorithm at tlaen® time that an
agent is actually experiencing the MDP. Thus, dge&xperience
can actually be used to determine which statebacked up.
» Efficiency of Dynamic Programming
o For n states and m actions, a DP method is gua@mdeconverge to an
optimal policy in polynomial time even though tla¢al number of
(deterministic) policies is
o Linear Programming can be used for MDP’s but isactable for a large
number of states.
o Dynamic Programming still limited by treairse of dimensionality the
number of states often grows exponentially withrthenber of state
variables.

5: Monte Carlo Methods

Monte Carlo - algorithms that estimate value function and ogtipolicies based
solely on experience; that is, sample sequencstt#s actions and rewards from an on-
line or simulated interaction with the environmeMethod based on the concept that as
more returns are accumulated, the average shonlceoge to the expected value.

» Backup Diagram — only a single path over an emrisode occurs.

* Advantages over DP: :
o Only requires sample episodes rather than a mddeée@nvironment.
o0 No Bootstrapping — estimates for each state arepieadent.
o0 The computational expense of the estimate for statbk is independent of
the number of states.
o Can concentrate on a small subset of states toasti
0 Less harmed by violations of the Markov assumptiecause they don’t
bootstrap
» MC averaging strategies

0 every visit MC — estimateS/”(s) as the average of returns following all
visits to statesin a set of episodes.

o first-visit MC — estimatesV”(s) just as the average of returns following
first visits to states.

o0 Both strategies convergeW(s) as the number of visits togoes to
infinity. Each average is an unbiased estimatesetstandard error ~
1/</n wheren is the number of samples.

* MC Estimation of Action values
o Without a model, state values are not sufficierdetermine a policy.

o Values Q”(s, a) are estimated from paths starting at ssataking action

a, and following policyrrthereafter.
» Both every-visit MC and first-vist MC converge quaiically.
0 Maintaining Exploration
» If s7is deterministic, many state-action pairs won'visited but
in order to compare, we need estimates for albastfrom a state.
» exploring starts - ensuring that each state-action pair is started
from with some non-zero probability

= alternatively, we maintain a stochastic policy withn-zero
probabilities of selecting each state.
* MC Control — GPI

evaluation
Q=Q"

W H—Q% »m—»Q" ... ™—Q

improvement

o Classical Policy Iteration
= Assumes (1) exploring starts (2) an infinite numtieepisodes per
evaluation step
» Under these assumptions the policy improvementéme@pplies:

Q" (s74.4(9)= @ (o7 (3)= V(¥
and equality is only achieved when bath, and 7 are optimal.

» Hence, the iterations of evaluation and improvenhead to an
optimal policy.
= However, the assumptions are unachievaldme can approximate
Q™ by bounding the error of the estimate in policgleation, but
this requires too many episodes in practice.
o0 Value lteration
* Only a single iteration of policy evaluation is @owhile
alternating between evaluations and improvements.
» Monte Carlo ES - value iteration using the exploring starts.
» Cannot converge to a suboptimal policy
» Stability is only achieved for optimal value furgstiand
policy.
* However, convergence to optimal fixed point is wved.
* Exploration vs. Exploitation:
0 on-policy approach agent commits to always exploring, but triefind
the best policy that still explores
o off-policy approach- agent explores with one policy but learns a
deterministic optimal policy possibly unrelatediie exploring one.
* On policy — methods that attempt to evaluate or improvetiiey that is used to
make the decisions for sampling in a Monte Carbbiégue.
o softpolicy- OsOS al A 77(s a>0.
» e.g.e-greedy policy
o0 GPI does not require the policy be strictly gremuy that it is moved
toward a greedy policy® move toward ais-greedy policy.
0 Again, we have by the policy improvement theoreat th

Q*(sm(9)= V(3

while again implies thatr' > 77. Moreover, equality only occurs when
both are optimal.
* |t can be shown that policy iteration works foreasoft policy 7z
» Off policy — methods that use one policy for Monte-Carlo dargpo evaluate
and improve a separate policy.

o behavior policy 7t — the policy used to generate the sampling behavio
The behavior policy must tsoft

o estimation policy 77— the policy that is evaluated and improved.

o Under the condition that every action taken undisrtaken at least

occasionally undert; 77(s,a)>0 = (s g> 0, we have...
= Let p(s) and p '(s) be the probability of that complete sequence
occurring under policiegand 77, respectively, starting in stage

n PB(S
IR EIE
p'(9) _
s Pl o(s) " (s a)
i=1 p| '(S)

o Problem method learns only from thails of episodes; after the last
nongreedy action (have 0 probabil# have 0 weights). If nongreedy
actions are frequent, learning is slow.

* Incremental Updates— Monte Carlo updates can also be done increntgntal

o Difference between MC and bandit problems

= Monte Carlo typically involves multiple situations
= Monte Carlo typically returns nonstationary distitibns.
o0 Monte Carlo weighted average:

V - ZEZka R<

’ Z:zlwk

o Incremental weighted average:

Vn+l =Vn+V%[R&l_ Vn]

n+l

V(s)=

Wo =W+ W,
V, =W, =0
* constanta MC:
0 once the final rewar®, is received for the episode:

V(s)=V(s)+a[R- M 8]

6: Temporal-Difference Learning

Temporal Difference (TD) Learning - learning both from raw experience (no
model) as in MC, but estimate updates depend aar tearned estimates as well as in
DP. As with previous methods, control is done Bams of GPI.

* bootstrapping — a method that uses previous estimates in ugpatirestimate.
temporal difference— each error is proportional to the change in torhine
prediction.

TD(0)

o V(s)=V(s)+al L. +yV8:)- M 9]
o0 Backup Diagram ;}

O

Advantages of TD Prediction
o Do not require an environment model
o Naturally implemented in on-line, fully incrementakhion

= MC not well suited to very long episodic or conimytasks.

o Proven to converge t¢” for any fixed policyrzgiven that step-size is
small enough or decreases according if their sowgunbounded by the
sum of their squares is finite (see Chapter 2).
= TD methods usually converge faster than constadic methods
on stochastic tasks.
Optimality of TD(0)

0 batch updates— updates are made after processing a “batchataf. d

o Batch Monte Carlo methods always find the estimiitasminimize mean-
squared error on the training set, whereas batcl{O)@lways finds the
estimates that would be exactly correct for the imar-likelihood model
of the Markov process.

0 certainty-equivalence estimate- the estimate of the value function that
would be exactly correct if the model were exactiyrect.

» Batch TD(0) converges to certainty-equivalencenesie.

» TD methods requirdl (humber of states) memory on repeated
computation, while finding the exact estimate meguireN?
memory and its value functid#® computation.

e Sarsa On-Policy TD Control

0 Sarsa uses every element of the tl(px!eq, Fi1r Sear a+l) in estimating
QH(S, a) .
Qs a)=As A*ral wry s)= €53
o We continually estimat€” for the behavior policyz and simultaneously
changerrto be greedy with respect @”.

= Step-by-step learning methods will avoid non-temtiimg episodes
since the policy is adjustetliring the episode
0 Sarsa converges with probability 1 to an optimdicgtaction function if:

» all state-action pairs visited infinitely often

= policy converges to a greedy policy (eggreedy wk=1/t).

* Q-Learning: Off-Policy TD Control
0 one-step Q-learning

Qs:2)= A5 A+a| mrymaxq s, f Qo5)

» learned action-value functid@ directly approximate§) .

Backup Diagram

max

o Exercise Update Rule**

* max of next state-action pairs replaced by theireetation

Q(s.a)=q's a)+a[t£1+y§ﬂ(s3Qs B (?tst)%

» Actor-Critic Methods — an on-policy learning technique where policy is

explicitly represented.

0 actor — policy structure used to select actions
0 critic — estimated value function used to criticize axgiof the actor...

typically the state-value function

Actor

»
L

Policy

Critic

TD\error

statg | Value
"| Function

0 critic's evaluation iSID error:
Jt =l +W (St+1) _V($)

A

reward

Environmen

action

= if error is positive, tendency to select act@increased.
» f error is negative, tendency to select ac#pdecreased.

0 Gibbs softmax policy:

m(sa)=Ha=ds= b=

p(s.
z gh(sh
b

gP(sd

» preference functiorp(s, a) - the preference for actianin states.
* update rules for the preference function

o p(sa)=ns d+53
o p(s.a)=ps A+A4(1-7(s 3)

o Advantages of Actor-Critic

= Since policy is stored explicitly, no computatiam &ction
selection

» Capable of learning optimal probabilities for ampksit stochastic
policy.
R-Learning — an off-policy control method in which one neitldéscounts nor
divides experience into distinct episodes. Thenkelaseeks to obtain the
maximum reward per time-step

0 average expected reward per time step under palicy
n
o =lim Ez E,.[r]
== N3
» assumes processaggodic nonzero probability of reaching any
state from any other state under the policy.
= " does not depend on the starting state.
o0 Relative Values:
» state-value function

V(8)=> E | tu-p"15= 9
k=1
» state-action value function:
Q(sa=Y E[-0"ls=sa= ¢
k=1
0 R-Learning is standard TD control
» behavior policy and estimation policy
= action-value functio®: approximation ofQ”

» estimated average rewapodapproximation ofp”

afterstate — in many situations, it is convenient to evaluagestate after the
agent has made an action. Such states are knoafteestates with their
corresponding afterstate values.
o Convenient due to the fact that many state-aceguences result in the
same new state.

8: Generalization and Function Approximation

generalization— How can experience with a limited subset of tiagesspace be used to
generalize to a good approximation over a muctelasgbset?
* most states experienced will never be re-experaergactly as before in realistic
settings.

function approximation - taking examples from a desired function anchgiting
to generalize to construct an approximation of thattion... a supervised learning task.

* Viis no longer a table, but rather a function patenmed by vectou?t where the

number of parameters is typically far fewer tham tinmber of states.
» Prediction methods produce backups of the femm v; sis the state andis the
back-up value for that state.

o In functional approximation, the back-ups~ v, are passed to the
supervised learner as training examples for prodyttie estimated value
function.

= Must be able to occur on-line while interactingtwithe
environment.
= Must be able to handle nonstationary target functio
» Performance measure

0 Mean-squared error (MSE) of approximatingv; with parameteré:

MSE 6]=3 R3[V(3 M ¥

* Pisa dlstrlbutlon weighing the error of stategitglly the
distribution from which states in training exampéee drawn.

= on-policy distribution — the frequency with which states are
encountered while agent is interacting with theimmment.

= global optimum &" - a parameter vector such that
06 MSE 6 |< MSE |

= |ocal optimum & - a parameter vector such that
MSE[E?*JS MS%@} for all & in some neighborhood & .

» state aggregation- states are grouped together with one table @etrgroup.

Gradient Descent - the parameter vector is adjusted after each pbealny a small
amount in the direction of the negative gradienthefexample’s squared error — the
direction in which error decreases most rapidly.
» Traditional Gradient Descent
0 parameter vector is a column vector with fixed nemtf components:

= T
6=6..-.6,]
0 Vi(s)is a smooth differentiable function éF

o At each time step, we observe an exanple> V7 ('s)
o Gradient Descent update:

6.,=6+a [V'(s)-V($)]0, V(3
where the gradient is,

a(a) o <é)]T

.V = =
M{3) [aeu 94,

o If the step-size parameter satisfies the stochapficoximation
conditions then gradient descent will converge to a locainopm.
* Unbiased Estimate
o If v is anunbiasedestimate oV " (), E[v]=V"(s), for eactt, then

5{ is guaranteed to converge to a local optimumefdtep size satisfies
the stochastic approximation conditidnghe following update:
6.=6 +a, I:Vt -V, ($):|D§t V(5)

e n-step TD returns
o Forward-view update:

6..=6+a R -V(s)]0, V(9
= For/<1, R' is not an unbiased estimate\of(s).
o Backward-view:
6..=6+a,38
= TD error:
Jt =hat W, (St+1) _\4($)
= column of eligibility traces:
& =pe,+0, V(s
» Common function approximation methods using graeikscent:

0 Multilayer Neural Network with back-propagation.
0 Linear Form

Linear Methods -V, is a linear function of the parameter vecgbrand a feature

vector @ =[@,,.... ¢, n]T describing the the stase

value function: Vi (S) :<§t&3> = zin:let,i%i
gradient: O.Vi(s)= @

There is only one optimal valué; , the global optimum. Hence, any method
guaranteed to converge to a local optimum will @nge to the global one.
o The TDQ) gradient descent method will converge within@daof the
global minimal error:
=1 _1-)A -
MSE[Qm]s MSEEH]
1-y
Determining the features that represent a state adi#gree of prior knowledge.
o Linear forms prohibit interactions between featuresice one needs to
explicitly introduce extra features for conjunctsoof feature values when
using linear function approximation methods.

Feature Methods:

receptive field— the region defining a feature in state space.
binary feature — a feature with a 0-1 value representing whetheistate is
contained within the feature’s region.
Coarse Coding— represents a state by overlapping featurestbiath
observations of a state affect the approximateevalactions for all states in the
union of the feature’s that contain the observatest
o Small features — generalization occurs over a ghstance making
functional approximations bumpy.
0 Large features — generalization over large distaceesing
approximations to be smoother.
o Initial generalization from one point to anotherasntrolled by the size
and shape of receptive field, laduity, the finest discrimination possible,
is controlled more by the total number of features.

Tile Coding — features are grouped intdilang, an exhaustive partitioning of the
input space, where each tile is a receptive fietdLfbinary feature.
0 since exactly 1 feature is present in each tilihg,total number of
features is simply the number of tilings.
» given the coordinates of a point in space, it &/da determine the
index of its tiling.
= multiple tilings are offset by different amounts.
= width and shape of tiling chosen to match geneatibn width.
* number of tiles ~ resolution of final approximation
0 stripe tiling— promotes generalization in the direction of$hgs and
discrimination along the direction perpendiculatfte strips.

aenera izg{
dis¢riminatior

0 axis-aligned tilings correspond to ignoring sonmelisions in some of
the tilings to hyperplane slices.
0 Hashing-— a pseudo-random collapsing of a large tiling mtmuch
smaller set of tiles. These tiles are noncontigutigjoint regions
“randomly” spread throughout the space.
» hashing reduces effect of curse of dimensionality.
Radial Basis Functions- Features have a Gaussian response dependemnonly
the distance between the statnd the feature’s center state

a(i)= exp{_nsz'a‘linz}

0 RBF network — a linear function approximator using RBF feasure
» function varies smoothly and is differentiable.
* requires greater computation effort and more matwnahg.
Kanerva Coding — each feature corresponds to a prototypical siaddts
receptive field is defined as the states suffityeciose inHamming distance
the number of bits (dimensions) on which the tvatest disagree.
o Other features choices tend to have exponentialyynfieatures in the
dimensions of the space.
* In the worse case, exponentially many featureseapaired.
» However, often desirable functions lie in a subspac
o0 The complexity of the learnable function for Kareenoding depends
entirely on the number of features rather thamtimaber of dimensions!

Control with Functional Approximation

* Extending to GPI
o0 Policy Evaluation
» functional approximations target the action-valuection,

Q =Q", and are trained by examplgsa > y wherey; is any
approximation on”(s, a) by previously discussed methods.

fa=8+a[v-Q(s.2)]0, Qs @

o Policy Improvement changes the estimation policy to the greedycgoli

» Suitable techniques for continuous actions or gelaliscrete set of
actions is ungoing research

* For manageable sets of discrete actions, the greadhy for a
state can be found by brute force,

a =argmax Q(s ,d

0 Using replacing traces is difficult since no sintykce corresponds to a
state.

» For gradient-decent linear approximations, treagiagh feature as
a state w.r.t. replacing traces works well.

= Often useful to clear all traces of all featuresdiate and action
not selected and set the trace of the selectestatdipon to 1.

o Exploration can be assured through either on-poticyff-policy.

0 Algorithms for Sarsa() and QQ) on pages 212-213 of book.

* Bootstrapping — updating of a value estimate on the basis ofrotakeie
estimates.

o off-policy bootstrapping — bootstrapping with a different distribution
(estimation policyfor backups than the one used for exploring thtes
spaceljehavior policy.

= |n functional approximation, off-policy bootstrapgican lead to
divergence and infinite MSE.

» Heuristic: keep the behavior policy sufficientlpse to the
estimation policy.

= Stability is guaranteed if the value function islafed to the best,
least-squares approximation if the feature vedtora a linearly
independent set.

» Stability is guaranteed for functional approximatoalled
averagerghat do not extrapolate from observed targets (e.g
Nearest-Neighbor, local weighted regression).

o In practice bootstrapping methods are preferrecestiineir performance is
much better despite their higher asymptotic ernat potential for
instability.

11: Case Studies

TD-Gammon - A backgammon program by Tesauro that used tHa)JTé)gorithm
and nonlinear function approximations via a mwtlianeural net trained by
backpropagating TD errors. The player requiretkldackgammon knowledge but
learned to play extremely well.

* Rules
o]

o

o

o

o

Board made of 2points White moves counterclockwise, Black moves
clockwise. Obijective is to get all pieces off theard.

Rolls of die allow selection of a piece to movethg distance rolled on
each die.

Moving onto gpoint occupied by a single opponent piece isid':* The
opponents piece is placed on tie then returned to the beginning.

If 2 or more pieces occupyp®int, the opponent cannot move a piece
there.

A major strategy is to form contiguous blocks ofwgiedpoints

* Characteristics of Backgammon

(0]

(0]
0]

The game is highly stochastic, but a complete dasmn of the game’s
state is available at all times.

The number of states is too large for a look-upetab

The opponent serves as a source of uncertainty.

* Design

(0]

o

(0]

Value function,Vi(s), computed by a neural net to estimate the proibabil
of winning starting from state
» Also compute the probability of winning by meansaof
“backgammon”.
* Input was a representation of a backgammon posiiahthe
output was an estimate of the value of that pasitio
Tesauro represented state in a straightforward e unit was
provided for each conceptually distinct possibitiat seemed relevant
and scaled to be between 0 and 1. Positions Vitenstates.
TD-Gammon used the gradient descent form ofAl@&ing
backpropagation.
TD-Gammon learned by playing against itself.

* Implementation:

(0]

(0]
0]
(0]

TD-Gammon 0.0 — no previous knowledge and becammpettive with
other backgammon programs (with previous knowledge)
TD-Gammon 1.0 — specialized backgammon featurespocated.
TD-Gammon 2.0 & 2.1 — used a 2-ply look ahead.

TD-Gammon 3.0 - used a 3-ply look ahead.

 TD-Gammon learned to play some opening positiottebthan the previous
strategies developed by humans.

Samuel’'s Checkers - used a form of temporal-difference learning kean
effective use of heuristic search through the spsee of the game checkers — terminal
board positions are scored by a value functiorscaring polynomial”.

» Shannon’s minimax proceduremachine always tries to maximize score while
opponent attempts to minimize it. Sophisticatetdetechniques use this to
prune the search spaceaipha-beta cutoffs

» rote learning— saving a representation of a board along wstikemputed
backed-up value as determined by the minimax proreeét caching.

» ‘“sense of direction” — decrease in a position’sieatach time it is backed up a
ply (turn). Thus, the learner will choose the Iply-alternative while winning
and the high-ply alternative if losing.

» |earning by generalizatior program played against itself and performed a
backup operation after each move.

o Close to the central idea of temporal differeneereng — the value of the
state should equal the value of likely

* No explicit reward; instead the weight of the feafpiece advantageas fixed.
Thus, the goal of the program became to improvpiése advantage.

0 Since it was not constrained to find a useful eatadun function, it was
possible for it to become worse with experiere@valuation functions
could be made consistent while having nothing tevith winning or
losing.

» The checker’s player developed a good middle gamedmained weak in
opening and endgame play.

The Acrobat — A 2 link robot analogous to a gymnast on a ligh The first joint
cannot exert torque while th&%an. One objective is to swing the tip abovefitse
joint by the length of 1 of its links in minimahtie.
» Actions — either positive, negative, or 0 torq@nly a single value of
positive/negative torque was allowed.
» Trained withSarsaf) with linear function approximation via tile codiagd
replacing traces.
0 state — a direct representation of the positionwahakities of the 2 links.
A more clever representation might have been tigelanposition and
velocity of the 2% link.
o Tiling divided the 4 dimensional state space in varioagswesulting in
over 25,000 tiles.
0 A greedy policy was used since long sequencesroécoactions were
required for success to occur. Exploration wasaaied by starting
action-value®ptimisticallyat the low value O.

Elevator Dispatching - How can elevators be dispatched (and distribwiste
idle) to minimize the wait time of the customers.
» state — each elevator has a position, directiogedalong with a set of requests.
* System Metrics
0 average waiting time— how long the passenger waits before getting on.
0 average system time- how long the passenger waits before arriving.
0 percentage of passengers whose wait exceeds 6@dseco
0 average squared waiting time- tends to keep waiting times low while
encouraging fairness of service.
» Constraints
each elevator makes its decisions independently
elevators cannot pass a requested floor
elevators cannot reverse direction until all pageenhave departed.
elevator cannot stop at a floor unless requested.
When given a choice, elevator constrained to g{pugvent rush hour
from pushing all elevators to the lobby)
* Design
o semi-Markov decision process- system makes discrete jumps between
times when decisions had to be made.
o0 Return is generalized to an integral of future nelsa

R=[e’ o

r... is the instantaneous reward

t+71

arwnE

>0 serves an analogous role jag[0,1]
o Semi-Markov backup for a tabular action-value fiorct

Qsd= (s g+a| [& ra+ € mac @ 5 p- 0 99

0 Action-value function represented by nonlinear aénoet trained by
backpropagation.
0 Actions are selected using t@gbbs softmayrocedure and gradually
raising the temperature
* Implementations
0 RL1 - each elevator is given its own action-valuection and neural net.
0 RL2 - only 1 shared action-value function and nenea

Dynamic Channel Allocation - How to make efficient use of available bandwidth
to provide service to as many possible custometsakigig advantage of the fact that a
communication channel (band of frequencies) canseel simultaneously by several
callers if they are physically spaced far enoughrtapot to interfere.
* Terminology
o0 channel- a division of the bandwidth in a certain ranf&equencies.
o channel reuse constraint- the minimum distance at which there is no
interference.
o cells— a division of the service region.
o hand off — the change of service for a call from cell th wden a
crossing a boundary.
0 blocked call— a call that can not be made when no channelsvaible.
* The core problem is to allocate channels with th&l of minimizing blocking.
o fixed assignment- permanent assignment of channels to cells torass
that the channel reuse constraint is never violated
o dynamic assignment- all channels are available to all cells andgpeesd
dynamically as call arrive.
* RL Solution
o0 State — treated as an afterstate
» usage state for each channel for each cell.
» eventindicator (arrival, departure, or handoff)
o Reward
» Attimet, the immediate rewand, is the number of calls.
* Returnis,

R=[e"r. o
o Value Function — a weighted sum of features.
1. availability feature— number of additional calls that could be
accepted without conflict assuming all other cditin’'t change.
2. packing feature- a cell-channel pair that gave the number ofgime
the channel was being used in that configuratiaghiwé cells.
o Simulation
= 7X7 array of cells with 70 channels.
= channel reuse constraint — 3 cells.
» calls arrived randomly according to a Poisson fbgsvith
different means for each cell.
» call duration was exponential with a mean of 3 rtesu

Job-Shop Scheduling - create a schedule specifying when each taskikedim and
what resources it will use that satisfies all tbastraints while taking as little overall
time as possible
» Temporal Constraints some tasks have to be finished before otherbegim.
* Resource Constraints Tasks requiring the same resource cannot baiedc
simultaneously.
» planspace — states are complete plans and actiomsaarenodifications.
* In general, Job-Shop Scheduling is NP-complete.
o Not hard to find a conflict-free schedule, but ghertest is hard.
o Realm of Combinatorial Optimization
* Zhang and Dietterich wanted an RL system to legyalizy that could quickly
find good schedules for SSCP (Space Shuttle Payoackssing).
o iterative repair method — begins with a critical path schedule and
modifies it to remove resource constraint violasion
» critical path schedules, — a schedule that meets the temporal
constraints but ignores the resource constraints.
» REASSIGN-POOL - changes the pool assigned to &stask
resources.
» MOVE - moves a task to an earlier or later timeabsfy a
resource constraint, then reschedules by thear@th method.
0 episodic problem with rewards designed to promoiekg(few repairs)
conflict-free schedules of short duration.
* Problem: The shortest schedule for a difficultamste (many tasks
and constraints) will be longer than the shortekedule for a
simpler instance.
» Resource Dilation Factor (RDF)- an instance-independent
measure of a schedule’s duration.
0 Methodology
» TD(A) used to learn the value function.
= function approximation with a multilayer perceptron
» actions selected by argreedy policy.
= TD(A) algorithm usedbackwardafter each episode, with the
eligibility trace extending to future rather thaamsp states.
= experience replay replaying a remembered “best” episode during
training.
» random sample greedy searelkstimates greedy action by
considering only a random sample of actions.
» TD-error used in back-propagation for neural neigiveupdates.
= Later version used a time-delay neural net (TDNiN) a set of
“kernel” networks to create more abstract features.
0 Results
» Showed that the learning system produced schedalgayithms
that needed fewer repairs to find conflict-freeestilies of similar
quality as iterative repair algorithms.
= Learned how to quickly find good schedules forasslof related
scheduling problems.

