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Making Simple Decisions 
decision-theoretic agent – an agent capable of making decisions in the face of 
uncertainty and conflicting goals via a continuous measure of state quality. 

Combining Belief and Desire under Uncertainty 
• utility function – describes the desirability of each state.  Combined with the 

probability of each action’s outcome these give expected utility of the action. 
o expected utility (A is the action, E is the evidence): 

[ ] ( ) ( )( ) ( )( )| Result | , Resulti i
i

EU A E P A Do A E U A=∑  

o principle of maximum expected utility (MEU) – a rational agent should 
choose the action that maximizes it’s expected utility. 

o If an agent maximizes a utility function that correctly reflects the 
performance measure for behavior, it will achieve the highest possible 
performance measure in averaging over all environments possible. 

• one-shot decision – agent only chooses the next action to make. 
• sequential decision – agent must choose best possible sequence of actions. 

Utility Theory 
1. A B≻   A is preferred to B. 
2. A B∼   agent is indifferent between A and B. 
3. A B≻

ɶ
  agent prefers A to B or is indifferent. 

• Lottery – a set of outcomes Ci with a probability pi: [ ]1 1 2 2, ; , ; ; ,n nL p C p C p C= …  

• Axioms of Utility Theory 
1. Orderability – for any two states, an agent must prefer one to the other or 

else be indifferent between them. 

( ) ( ) ( )A B A B A B∨ ∨≻ ≺ ∼  

2. Transitivity –A preferred to B, & B preferred to C, then A preferred to C. 

( ) ( ) ( )A B B C A C∧ ⇒≻ ≻ ≻  

3. Continuity – If B is between A and C in preference, there exists 
probability p for which the agent is indifferent between getting B for sure 
and a lottery that yields A with probability p and C with probability 1-p. 

[ ], ;1 ,A B C p p A p C B⇒ ∃ −≻ ≻ ∼  

4. Substitutability – an agent indifferent to A and B is indifferent to 2 more 
complex lotteries, 1 with each A and B. 

[ ] [ ], ;1 , , ;1 ,A B p A p C p B p C⇒ − ⇒ −∼  

5. Monotonicity – If 2 lotteries have the same outcomes, A and B, and agent 
prefers A to B, then it also prefers the lottery with higher probability of A. 

[ ] [ ], ;1 , , ;1 ,A B p q p A p B q A p B⇒ ≥ ⇔ − −≻ ≻
ɶ

 

6. Decomposability – Compound lotteries can be decomposed: 

[ ] ( ) ( )( ), ;1 , , ;1 , , ; 1 , ; 1 1 ,p A p q B q C p A p q B p q C   − − − − −   ∼  
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• Utility 
1. Utility Principle 

( ) ( )
( ) ( )

U A U B A B

U A U B A B

> ⇔

= ⇔

≻

∼

 

2. Maximum Expected Utility Principle 

[ ]( ) ( )1 1, ; ; ,n n i i
i

U p S p S pU S=∑…  

• By observing a rational agent’s preference, it is possible to construct the utility 
function representing what the agent’s actions attempt to achieve. 

Utility Functions 
• the utility of money 

o monotonic preference – agent prefers more money to less 
o true utility of positive money is more logarithmic…  given only a small 

amount of money, agent is willing to risk it all, whereas the rich need 
more incentive since less gain is not worth the risk of having nothing. 

o in considering negative money, utility becomes an S-curve… the deeper in 
debt one goes the more risk one is willing to take to eliminate it. 

• Insurance Premium 
o insurance premium – the difference between the expected monetary value 

of a lottery and its certainty equivalent:  ( ) ( )( )EMV LIP U L U S= −  where 

SEMV(L) is the state of having the expected monetary value of lottery L. 
� 0IP >   risk adverse 
� 0IP =   risk neutral 
� 0IP <   risk seeking 

• utility scales and assessment 
o Consider transformation ( ) ( )1 2'U S k k U S= +  where k1 is any constant 

and k2 is any positive constant.  Then the agent’s behavior is the same for 
utility U and U’. 

o In a deterministic context, agent’s behavior is unchanged by any 
monotonic transformation � value function – a function that provides a 
ranking of states rather than meaningful numeric values. 

� best possible prize: ( )*U S u↑=  

� worst possible prize: ( )U S u↓=  

� normalized utility - 0u↓ =  and 1u↑ = . 

• normative theory – how a rational agent should act. 
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Multiattribute Utility Functions 
• multiattribute utility theory – utility theory for outcomes involving two or 

more attributes: 1, , nX X=X … . 

• strict dominance – option 1 has higher value on all attributes than another option 
2.  Clearly the 1st option is chosen. 

• stochastic dominance – if two actions A1 and A2 lead to probability distributions 
p1(x) and p2(x) on attribute X, then A1 stochastically dominates A2 on X if, 

( ) ( )1 2

x x
x p y dy p y dy

−∞ −∞
∀ ≤∫ ∫  

o If A1 stochastically dominates A2, then for any monotonically 
nondecreasing utility function U(x), the expected utility of A1 is at least as 
high as the expected utility of A2. 

o qualitative probabilistic networks – algorithms for making rational 
decisions based on stochastic dominance alone. 

• representation theorems – theorems that identify regularities in preference 

behavior;  ( ) ( ) ( )1 1 1, , , ,n n nU x x f f x f x =  … …  

• preference independence – attributes X1 and X2 are preferentially independent 
of X3 if the preference between outcomes 1 2 3, ,x x x  and 1 2 3', ',x x x  doesn’t 

depend on the value x3. 
• mutual preferential independence (MPI) – no attributes affect the way in 

which one trades off to the other attributes against each other 
o If attributes 1, , nX X…  are mutually preferentially independent, then the 

agent’s preference behavior can be described as maximizing the function 

( ) ( )1, , n i i
i

V x x V x=∑…  

where each Vi is a value function referring only to the attribute Xi. 
o additive value function – a multiattribute value function that is the sum 

of value functions for individual attributes. 
o Even in situations where additive value functions are not valid, they often 

serve as good approximations to the actual value functions. 
• utility-independence – an extension of preference independence to lotteries.  A 

set of attributes X is utility-independent of a set of attributes Y if preferences 
between lotteries on the attributes in X are independent of the particular values of 
the attributes in Y. 

• mutually utility-independent (MUI) – each subset of a set of attributes is 
utility-independent of the remaining attributes. 

o multiplicative utility function – a function that can express the behavior 
of any agent exhibiting MUI in only n single-attribute utilities and n 
constants for n attributes. 
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Decision Networks 
• decision network – a Bayesian network with additional node types for actions 

and utilities.  Contains information about the agent’s current state, its possible 
actions, the state resulting from the agent’s action, and the utility of the state. 

o Structure 
� Chance nodes (ovals) – represent random variables each with a 

conditional distribution indexed by parent states.  Parents can be 
other chance nodes or decision nodes. 

� Decision nodes (rectangles) – represent points where agent has a 
choice to make. 

� Utility nodes (diamonds) – represent the agent’s utility function.  
Its parents are all variables directly affecting utility. 

o action-utility tables – A simplified form in which the action is connected 
directly to the utility thus making the utility node represent the expected 
utility… a compiled version. 

The Value of Information 
• information value theory – theory describing what information is best to acquire 

in order to make a decision… one of the most important parts of decision making 
is know what questions to ask. 

o sensing actions – actions preformed in order to acquire information 
o value of information – the value of a piece of information is the 

difference between the expected utility between the best possible actions 
before and after information is acquired. 

� Information has value to the extent that it is likely to cause a 
change of plan and to the extent that the new plan will be 
significantly better than the old one. 

• value of perfect information (VPI) – value of information assuming exact 
evidence Ej of some random variable is obtained: 

( ) ( ) ( ) ( )| , |
jkE j j jk e j jk

k

VPI E P E e EU E E e EU Eα α = = = −  ∑  

o Properties 

� VPI is non-negative: ( ), 0E jj E VPI E∀ ≥  

� VPI is not additive (in general): 

( ) ( ) ( ),E j k E j E kVPI E E VPI E VPI E≠ +  

� VPI is order-independent: 

( ) ( ) ( ) ( ) ( ), ,,
j kE j k E j E E k E E j E kVPI E E VPI E VPI E VPI E VPI E= + = +  

• Information-Gathering Agent 
o agent is myopic since the VPI formulation only accounts for the effect of 

evidence Ej given that only that Ej is observed without including the 
possibility that future evidence may make the observation of Ej more 
valueable. 
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Making Complex Decisions 
Sequential Decision Problems – utility depends on a sequence of decisions. 

• transition model T(s,a,s’) – probability of going from state s to s’ via action a. 
o Markovian – the probability of reaching s’ from s depends only on state s 

and not on the entire history of earlier states. 
• environment history – the sequence of states on which utility depends.  In state 

s, the agent receives a reward of R(s) so we simply sum the rewards received. 
• Markov Decision Process (MDP) – a fully observable environment with a 

Markovian transition model and additive rewards. 
o initial state S0, transition model T(s,a,s’), & reward function R(s) 

• policy ππππ - a plan of what action to take in a given state: ( )t ta sπ=  

• optimal policy ππππ* - a policy that yields the highest expected utility. 
• Optimality for a sequential decision process 

o Is the task episodic or continual? 
� finite horizon – the decision process goes on for a fixed time N 

(optimal policy is nonstationary). 
� infinite horizon – process continues forever (stationary policy) 

o How to calculate the utility of state sequences? 
� stationary preference assumption – if two state sequences, 

[ ]0 1 2, , ,s s s …  and [ ]0 1 2', ', ',s s s … , begin with the same state, 

0 0 's s= , then the preference order of the two sequences should be 

the as sequences [ ]1 2, ,s s …  and [ ]1 2', ',s s …  are ordered. 

� Under stationarity, there are only two possible utilities: 

• Additive Rewards [ ]( ) ( )0 1 2 0
, , ,

T

h tt
U s s s R s

=
=∑…  

• Discounted Rewards [ ]( ) ( )0 1 2 0
, , ,

T t
h tt

U s s s R sγ
=

=∑…  

o [ ]0,1γ ∈ is a discount factor equivalent to an interest 

rate of ( )1/ 1γ − . 

� How to calculate utility when history is infinite. 
1. For discounted rewards with a maximum reward maxR  and 

1γ < , utility is still finite: 

[ ]( ) ( )0 1 2 max, , , / 1hU s s s R γ≤ −…  

2. Proper policy –guaranteed to always reach terminal state. 
3. Compare infinite sequences by mean reward per time step. 

o How to choose between policies? 
� A policy π generates a whole range of possible state sequences, 

each with a certain probability determined by the transition model. 
� Value of policy is the expected sum of discounted rewards. 
� optimal policy: 

( )*

0
arg max |t

tt
E R s

π
π γ π∞

=
 =  ∑  
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Value Iteration – an algorithm to calculate the optimal policy by calculating the utility 
of each state and using state utilities to select an optimal action in each state. 

• Utility  of a state s by following policy π: ( ) ( ) 0
0

| ,t
t

t

U s E R s s sπ γ π
∞

=

 = =  ∑  

• True Utility of state s:    ( ) ( )U s U sπ=  

• Maximum Expected Utility (MEU) principle: ( ) ( )*

'

arg max , , ' '
a s

T s a s U sπ = ∑  

• Bellman Equation 
( ) ( ) ( ) ( )

'

max , , ' '
a

s

U s R s T s a s U sγ= + ∑  

o The utility of a state is the immediate reward for that state plus the utility 
of the next state, assuming that the agent chooses the optimal action. 

o For n possible states, there will be n Bellman equations in n unknowns.  
Unfortunately they are nonlinear. 

• Iterative Approach – calculates the utility of each state via the utility of their 
neighbors � propagates information through the state space via local updates. 

o Bellman Update: ( ) ( ) ( ) ( )1
'

max , , ' 'i i
a

s

U s R s T s a s U sγ+ = + ∑  

o Converges to a unique solution whose corresponding policy is optimal. 
� contraction – a unary function that, when applied to two different 

values in turn, causes their output values to be “closer together”. 
• it can be shown, the function has a single fixed point 

� The Bellman update can be viewed as an operator B applied to the 
set of utilities: 1i iU BU+ =  

� max norm: ( )max
max

s
U U s=  

� The Bellman update is a contraction by a factor γ on the space of 
utility vectors.  That is, let Ui and Uj be two utility vectors, then 

max maxi j i jBU BU U Uγ− ≤ −  

� if 
maxiU U−  is the error in estimate Ui. 

• If Rmax is the bound on the rewards, then the number of 
iterations required to reach an error of at most ε is, 

( ) ( )( )
( )

maxlog 2 log 1

log

R
N

ε γ
γ

 − −
=  

−  
 

� If the update is small, then the corresponding error is small 

( )1 1max max
1 /i i iU U U Uε γ γ ε+ +− < − ⇒ − <  

� What the agent really cares about is how well it will do if it makes 
decisions based on the current utility function. 

• policy loss 
max

iU Uπ −  - the most the agent can lose by 

executing policy πi instead of the optimal policy. 

( )
max max

2 / 1i
iU U U Uπε ε γ γ− < ⇒ − < −  
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Policy Iteration – an alternative way to find optimal policies by alternating between 2 
steps: policy evaluation and policy iteration. 

• Policy Evaluation – given a policy πi, calculate i
iU U π= . 

o since policy is chosen, Bellman equations become linear: 

( ) ( ) ( )( ) ( )
'

, , ' 'i i
s

U s R s T s s s U sγ π= + ∑  

o Thus, given n states, this can be solved using linear algebra in O(n3). 
• Policy Iteration – calculate a new MEU policy πi+1 based on maximizing iU . 

• Modified Policy Iteration 
o Use simplified Bellman updates repeated k times for the evaluation step: 

( ) ( ) ( )( ) ( )1
'

, , ' 'i i i
s

U s R s T s s s U sγ π+ = + ∑  

o Often more efficient than either value iteration or policy iteration 
• Asynchronous Policy Iteration – pick any subset of states and apply either 

policy evaluation or policy iteration to that subset. 
o Under certain conditions on the initial policy and utility function, will still 

converge to optimal policy 
o Allows freedom to choose what states to work on. 

 
Partially Observable MDPs (POMDP) – an MDP agent operating in a partially 
observable environment where the optimal action is state s also depends on how much the 
agent knows in state s.  Defined in terms of a transition model ( ), , 'T s a s , a reward 

function ( )R s , and an observation model ( ),O s o  that specifies the probability of 

perceiving observation o in state s. 
• belief-state b – the set of actual states the agent might be in, represented by a 

probability distribution over all states. 
o If b(s) was the previous belief state when the agent executes action a and 

observes observation o, the new belief state is 

( ) ( ) ( ) ( )' ' ', , , '
s

b s O s o T s a s b s∝ ∑  

• The optimal action depends only on the agent’s current belief state � a mapping 

( )* bπ  from belief states to actions. 

• Solving a POMDP on a physical state space can be reduced to solving an MDP 
on the corresponding belief state space with transition model τ and rewards ρ. 

o The probability of an observation o given action a in belief state b is, 

( ) ( ) ( ) ( )
'

| , ', , , '
s s

P o a b O s o T s a s b s=∑ ∑  

o The probability of transitioning from belief state b to belief state b’ via 
action a is, 

( ) ( ) ( ) ( ) ( )
'

, , ' ' | , , , , , '
o s s

b a b P b o a b O s o T s a s b sτ =∑ ∑ ∑  

o The reward function for belief states is, ( ) ( ) ( )
s

b b s R sρ =∑  

o Finding even approximately optimal POMDPs is difficult – PSPACE-hard 
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Decision-Theoretic Agents – an approach to designing agents for partially 
observable stochastic environments 

• dynamic decision network – a dynamic Bayesian network (for transition and 
observation models) augmented with decision and utility nodes. 

o tX  - set of state variables at t – transition ( ) ( )1, , ' | ,t t tT s a s P A+≡ X X  

o tE  - set of evidence variables at t – observation ( ) ( ), |t tO s o P= E X  

o tA  - action made at time t. 

o tR  - reward received at time t. 

o tU  - utility of the state at time t. 

 
 
 
 
 
 
 
 
 
 

o current and future actions as well as future rewards and future 
observations are all unknown. 

• A filtering algorithm is used to incorporate new actions and percepts and thereby 
update the new belief state via a forward update. 

o By marginalizing future observations, the decision theoretic agent 
accounts for value of information thereby allowing for information-
gathering actions where appropriate. 

o Similar to ExpectMinimax algorithm except 
1. rewards can be non-leaf states 
2. decision nodes correspond to belief states 

o Time complexity for exhaustive search to depth d: O(|D|d|E|d) where |D| 
is the number of available actions and |E| is the number of possible 
observations. 

• Decisions are made by forward projecting possible action sequences and choosing 
the best one. 

o graceful degradation – can easily revise plan to handle unexpected 
observations. 
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