CS 188 Week 12 11/9/05

Making Simple Decisions

decision-theor etic agent — an agent capable of making decisions in the face of
uncertainty and conflicting goals via a continuous measure of state quality.

Combining Belief and Desire under Uncertainty

» utility function — describes the desirability of each state. Combined with the
probability of each action’s outcome these give expected utility of timac
0 expected utility (Ais the actionE is the evidence):

EU[A| E]:Z P(Result( A |Dq A .§ Y Resylf A

o principleof maximum expected utility (M EU) — a rational agent should
choose the action that maximizes it's expected utility.

o If an agent maximizes a utility function that correctly reflects the
performance measure for behavior, it will achieve the highest possible
performance measure in averaging over all environments possible.

» one-shot decision — agent only chooses the next action to make.
» sequential decision — agent must choose best possible sequence of actions.

Utility Theory

1. A-B Ais preferred tds.
2. A~-B agent is indifferent betwee¥andB.
3. A-B agent preferé to B or is indifferent.

* Lottery — a set of outcomes with a probabilityp;: L =[ p.CipyCoreos R C;,]

» Axiomsof Utility Theory
1. Orderability — for any two states, an agent must prefer ornlee@ther or
else be indifferent between them.
(A-B)O(A< B)O( A~ B
2. Transgitivity —A preferred to B, & B preferred to C, then A meéd to C.
(A-B)O(B-C)=(A- Q
3. Continuity — If B is between A and C in preference, there exists
probabilityp for which the agent is indifferent between getting B for sure
and a lottery that yields A with probabilipyand C with probabilityl-p.
A-B-C = Op [pAl- pG-~ E
4. Substitutability — an agent indifferent to A and B is indiffereatZ more
complex lotteries, 1 with each A and B.
A~B = [pAl-pd=[pnBl- p¢
5. Monotonicity — If 2 lotteries have the same outcomes, A anand,agent
prefers A to B, then it also prefers the lotteryhanigher probability of A.
A-B = pzq-[pAl- pB=[qA- pB
6. Decomposability — Compound lotteries can be decomposed:

[pAL-p[aBl-qd]-[ pALr paBE Wt b ¢



CS 188 Week 12 11/9/05

»  Utility
1. Utility Principle
U(A)>U(B) = A-B
U(A)=U(B) = A-~-B
2. Maximum Expected Utility Principle

U([p.siip §l)=2 U9

* By observing a rational agent’s preference, it is possible to construdilitye
function representing what the agent’s actions attempt to achieve.

Utility Functions

» the utility of money
0 monotonic preference — agent prefers more money to less
o true utility of positive money is motegarithmic... given only a small
amount of money, agent is willing to risk it all, whereas the rich need
more incentive since less gain is not worth the risk of having nothing.
0 in considering negative money, utility becomes an S-curve... the deeper in
debt one goes the more risk one is willing to take to eliminate it.
* Insurance Premium
0 insurance premium — the difference between the expected monetary value

of a lottery and its certainty equivalent? =U (L)-U (SEMV( L)) where

Semvq is the state of having the expected monetary value of Iditery

= |P>0 risk adverse
= |[P=0 risk neutral
= |P<O risk seeking

» utility scales and assessment
o Consider transformatiob '(S) = k + k U( § where k is any constant

and k is any positive constant. Then the agent’s banasithe same for
utility U and U".

o In a deterministic context, agent’s behavior ishamged by any
monotonic transformatio® value function — a function that provides a
ranking of states rather than meaningful numerices

= best possible prizéJ (S)=u
= worst possible prizeld (S)=u
= normalized utility -u =0 andu, =1.
* normativetheory — how a rational agent should act.
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Multiattribute Utility Functions

multiattribute utility theory — utility theory for outcomes involving two or
more attributesX = X,,..., X, .

strict dominance — option 1 has higher value on all attributes thaother option
2. Clearly the ¥ option is chosen.

stochastic dominance — if two actionsA; andA; lead to probability distributions
p1(x) andpz(x) on attributeX, thenA; stochastically dominateés on X if,

Ox [ a(y)dy<[ p(yd
o If A; stochastically dominates,Ahen for any monotonically
nondecreasing utility function U(x), the expectétityof A; is at least as
high as the expected utility 0§.A
0 qualitative probabilistic networks — algorithms for making rational
decisions based on stochastic dominance alone.
representation theorems — theorems that identify regularities in preferenc

behavior; U (%)= FLE(%) 0 f(%)]

preference independence — attributesX; andX; are preferentially independent
of X3 if the preference between outcomes x,, x,) and(x ', ", x,) doesn't

depend on the value.
mutual preferential independence (MPI) — no attributes affect the way in
which one trades off to the other attributes agaash other

o |If attributes X,,..., X, are mutually preferentially independent, then the

agent’s preference behavior can be described asmzaxg the function
V(% %)= 2 V(%)

where eacly; is a value function referring only to the attrid.
o additivevalue function — a multiattribute value function that is the sum
of value functions for individual attributes.
o Even in situations where additive value functioresrzot valid, they often
serve as good approximations to the actual valnetions.
utility-independence — an extension of preference independence toilegte A
set of attributeX is utility-independent of a set of attributésf preferences
between lotteries on the attributesdrare independent of the particular values of
the attributes iry .
mutually utility-independent (MUI) — each subset of a set of attributes is
utility-independent of the remaining attributes.
o multiplicative utility function — a function that can express the behavior
of any agent exhibiting MUI in onlg single-attribute utilities and
constants fon attributes.
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Decision Networks

» decision network — a Bayesian network with additional node typesafdions
and utilities. Contains information about the atgeourrent state, its possible
actions, the state resulting from the agent’s actmd the utility of the state.

0 Structure
» Chance nodes (ovals)represent random variables each with a
conditional distribution indexed by parent statBarents can be
other chance nodes or decision nodes.
» Decision nodes (rectanglesyepresent points where agent has a
choice to make.
= Utility nodes (diamonds} represent the agent’s utility function.
Its parents are all variables directly affectindjiyt
0 action-utility tables— A simplified form in which the action is connedt
directly to the utility thus making the utility nedepresent the expected
utility... a compiled version.

The Value of Information

e information value theory — theory describing what information is best tquace
in order to make a decisionone of the most important parts of decision making
is know what questions to ask.

0 sensing actions actions preformed in order to acquire informatio

o valueof information — the value of a piece of information is the
difference between the expected utility betweerbis possible actions
before and after information is acquired.

» |nformation has value to the extent that it isljki® cause a
change of plan and to the extent that the new pidirbe
significantly better than the old one.

» valueof perfect information (VPI) — value of information assuming exact
evidenceE; of some random variable is obtained:

Vel (8)=(SP(5 = 5) Ea, | £ 6= ¢)|- Eal b
o Properties
" VPlis non-negativej,E VPI.(E;)20
» VPl is not additive (in general):
VPI(E,, E)# VPL( E)+ VPL( E)
» VPl is order-independent:
VPI.(E; E)=VPL(E)+ VPL. ()= VPL. ( E)+ VP
* Information-Gathering Agent
0 agentismyopic since the VPI formulation only accounts for thieef of

evidenceg; given that only thak; is observed without including the

possibility that future evidence may make the olest@wn of E; more
valueable.
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Making Complex Decisions

Sequential Decision Problems — utility depends on a sequence of decisions.
* transition modd T(s,a,s’)— probability of going from stateto s’ via actiona.
o0 Markovian — the probability of reachingj from s depends only on stase
and not on the entire history of earlier states.
* environment history — the sequence of states on which utility depemdstate
s, the agent receivesraward of R(s)so we simplysumthe rewards received.
* Markov Decision Process (MDP) — a fully observable environment with a
Markovian transition model and additive rewards.
0 initial stateS,, transition modeT(s,a,s’) & reward functiorR(s)

- policy 77- a plan of what action to take in a given states 77(5)

« optimal policy 77 - a policy that yields the highest expected wtilit
* Optimality for a sequential decision process
o0 Is the task episodic or continual?
» finite horizon — the decision process goes on for a fixed time
(optimal policy isnonstationary).
» infinite horizon — process continues forevetationary policy)
o0 How to calculate the utility of state sequences?
» stationary preference assumption — if two state sequences,

[$.5. 5] and[s," 5" s"...], begin with the same state,
$ =S, then the preference order of the two sequences should be

the as sequencgs;, s,,...] and[s',s"...] are ordered.
» Under stationarity, there are only two possiblétigs:

- AdditiveRewards U, ([s. s, s-.])=Y. K 3

- Discounted RewardsU, ([s,, 5. s.--]) =Y./ K 8
o] yD[O,]] is a discount factor equivalent to an interest

rate of (1/y)-1.

» How to calculate utility when history is infinite.
1. For discounted rewards with a maximum rew&gd, and

y <1, utility is still finite:

Up([%: 5 8.-])< Ral(1-V)
2. Proper policy —guaranteed to always reach terminal state.
3. Compare infinite sequences by mean reward per time step.
o How to choose between policies?
» A policy ;rgenerates a whole range of possible state sequences,
each with a certain probability determined by the transition model.

» Value of policy is the expected sum of discounted rewards.
= optimal policy:

7= argnmaxE[z; VR(s) 17|
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Value Iteration — an algorithm to calculate the optimal policy by calculating the utility
of each state and using state utilities to select an optimal action in éach sta

- Utility of a states by following policyzz ~ U”(s) = E{iyt R(s)|m s= %
t=0

« True Utility of states: U(s)=U"(9
*  Maximum Expected Utility (MEWyrinciple:77 =argmaxy T (s a,s) U( s

* Belman Equation
U(s)=R(g+ymax2 T sad 4 3

o The utility of a state is the immediate rewardtfwat state plus the utility
of the next state, assuming that the agent chdbsesptimal action.
0 Forn possible states, there will beBellman equations in unknowns.
Unfortunately they are nonlinear.
» Iterative Approach — calculates the utility of each state via the utility of their
neighbors> propagates information through the state space via local updates.

o BelmanUpdate U, (s)=R( s)+ym§x§ Tsag U 3

o Converges to a unique solution whose corresponding policy is optimal.
= contraction — a unary function that, when applied to two different
values in turn, causes their output values to be “closer together”.
* it can be shown, the function has a single fixed point
» The Bellman update can be viewed as an opeBaqplied to the

set of utilities:U,,, = BU,
= maxnorm: |U| = msax‘U (s)

» The Bellman update is a contraction by a fagton the space of
utility vectors. That is, let); andU; be two utility vectors, then

|BU-BU| <yu-y

= if U, —U||max is theerror in estimatdJ;.

max max

* If Rpaxis the bound on the rewards, then the number of
iterations required to reach an error of at nadist
N = log(2R,,) — log(& (1))
~log(y)
» |f the update is small, then the corresponding error is small
||Ui+1_Ui||max<£(1_y)/y = ||Ui+1_U||max<£

» What the agent really cares about is how well it @o if it makes
decisions based on the current utility function

* policy IossHU & —UHmax - the most the agent can lose by

executing policyrr instead of the optimal policy.
U -ul..<e = UT-U| <2spi(1-y)
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Policy Iteration — an alternative way to find optimal policies btemating between 2
steps: policy evaluation and policy iteration.
» Policy Evaluation — given a policys, calculateU, =U " .
0 since policy is chosen, Bellman equations beconeal:

U()=R3+VE T sm( 5 § ¢}
o Thus, givem states, this can be solved using linear algeb@(ir).
» Policy Iteration — calculate a new MEU policyx:; based on maximiziny, .

* Modified Policy Iteration
o Use simplified Bellman updates repeakatmes for the evaluation step:

Uin(8)=RO9+yX s (3§ 1 3

o Often more efficient than either value iteratiorpolicy iteration
» AsynchronousPolicy Iteration — pick any subset of states and apply either
policy evaluation or policy iteration to that subse
0 Under certain conditions on the initial policy aumdity function, will still
converge to optimal policy
o Allows freedom to choose what states to work on.

Partially Observable MDPs (POMDP) — an MDP agent operating in a partially
observable environment where the optimal acti@tates also depends on how much the

agent knows in state Defined in terms of &ansition modeIT(s, 3 S) , areward

function R('s), and arobservation modeD(s, o that specifies the probability of

perceiving observatioa in states.
* bélief-state b — the set of actual states the agent might bepresented by a
probability distribution over all states.
o If b(s)was the previous belief state when the agent egs@dtiora and
observes observatian the new belief state is

b'(s)0O(s, 9> M sa$ b)
* The optimal action depends only on the agent’sentrbelief state> a mapping
7T (b) from belief states to actions.

* Solving a POMDP on a physical state space can be reduced to solving an MDP
on the corresponding belief state space with transition modet rewardso.
0 The probability of an observatiangiven actiora in belief staté is,

Plola =Y (<9 [ sa} b)

0 Theprobability of transitioningrom belief statd to belief statd’ via
actionais,

r(b,ab)=> P(blaabhd G sp> [ sak(b)
o Thereward functiorfor belief states is,  p(b)=> b(s) R 3
o Finding even approximately optimal POMDPs is élifficult — PSPACE-hard
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Decision-Theoretic Agents — an approach to designing agents for partially
observable stochastic environments
» dynamic decision network — a dynamic Bayesian network (for transition and
observation models) augmented with decision and utility nodes.

0 X, - set of state variables at transitionT (s, a s)= HX,, |X,, A

o E, - set of evidence variablestat observatiorO(s, o) = P(E, |X,)
0 A - action made at time
o0 R -reward received at tinte
o U, - utility of the state at time
At A1 At At At
X1 Xt X1 X2 Xt Ur
Ri1 Ry b1 t+2 Rr
=% = Et =) Er

o current and future actions as well as future rewart future
observations are all unknown.

» Afiltering algorithm is used to incorporate newians and percepts and thereby
update the new belief state via a forward update.

o By marginalizing future observations, the decidioeoretic agent
accounts for value of information thereby allowfoginformation-
gathering actions where appropriate.

o Similar to ExpectMinimax algorithm except

1. rewards can be non-leaf states
2. decision nodes correspond to belief states

o Time complexity for exhaustive search to deqntﬁ)(|D|d|E|d) where|D|
is the number of available actions d&glis the number of possible
observations.

» Decisions are made by forward projecting possibtea sequences and choosing
the best one.

o graceful degradation — can easily revise plan talegaunexpected
observations.



