
CS 188 Week 11 11/9/05

Dynamic Bayesian Networks (DBN) – a Bayesian network that represents a
temporal probability model by having state variables Xt replicated over time slices with
the same conditional independences. We also have evidence at each time slice Et. For
simplicity we assume a 1st order Markov process � a node’s parents are either in the
current or previous time slice.

• DBNs take advantage of the sparseness of the temporal probability model,
whereas the equivalent HMM assumes all internal state is dependent.

• DBNs can model arbitrary distributions (thus extending beyond the capabilities of
a Kalman Filter) allowing it to capture nonlinearities other models cannot.

• Constructing DBNs
o We need 3 broad types of information:

1. a prior distribution on the initial variables: ()0P X

2. a transition model: ()|t+1 tP X X

3. a sensor model: ()|t tP E X

o In addition, we must specify a local and temporal topology of the nodes at
the current state and the nodes at the previous state.

o Since the transition & sensor models are assumed to be stationary they
remain the same over time � only need to specify for initial time slice.

o Issues we need to deal with:
� Noise: we assume that our measurements are noisy, which we

model with a Gaussian error model.
� Failure: in the real-world, sensors fail – we need to model this

effect.
• In order to properly handle sensor failure, the sensor

model must explicitly include the possibility of failure.
• transient failure model – allocates a probability that the

sensor will return some nonsense value. This has the effect
of “ inertia” to prevent radical shifts due to intermediate
failures.

• persistent failure model – describes how a sensor behaves
under normal and failure conditions. In particular, we have
a small probability of failure, but it also models the fact that
sensors tend to remain broken.

CS 188 Week 11 11/9/05

• Exact Inference – given a sequence of n observations, we simply construct the
necessary DBN of n time slices – a process known as unrolling.

o But naively constructing the unrolled network requires O(t) space and
inference at each time step increases at O(t).

o A more efficient process uses variable elimination before proceeding to
the next time slice – this is equivalent to starting at Xt with a new initial
distribution determined by our variable elimination.

� This process exactly mimics the operation of a recursive filtering
update. This allows us to have constant space and time per slice.

� Unfortunately, the constant is exponential in number of state
variables.

� We cannot efficiently and exactly reason about the complex
temporal processes represented by general DBNs.

• Approximate Inference – to estimate inference on a DBN we need to overcome a
few obstacles:

o Overcoming these blocks relies on 2 observations.
� Again, unrolling the network is inefficient. Again, we run the

samples through the network one slice at a time. We use the
samples as approximate representations of the current state
distribution.

� Generating the samples with naïve likelihood weighting will have
~0 probability of matching the evidence. Thus, w.h.p. the samples
will be independent of the evidence and will have no weight.

• Thus, we require exponential samples to get accuracy.
• Instead, we want to focus the set of samples on the high-

probability regions of the sate space. We simply throw out
samples of very low weight.

o particle filtering – leverages the above observations to make an efficient
sampling algorithm that is consistent. We begin with N samples from the
prior distribution at time 0: ()0P X . Then we use an update cycle:

� Each sample is propagated to next time slice by sampling the next
state value xt+1 given xt using the transition model ()|t+1 tP X X .

� Each sample is weighted by the likelihood it assigns to the new
evidence: ()| +t+1 t 1P e x from the sensor model.

� A new population of N samples is resampled: each new sample is
selected proportional to its likelihood weight.

CS 188 Week 11 11/9/05

Noisy-OR

Suppose there are n diseases Di all of which cause a symptom S. In the classical logic
world, we might think that if you at least one of the diseases Di than you would have
symptom S and you wouldn’t have it otherwise. This is modeled by the following logical
sentence (a simple OR-gate):
 1 2 nS D D D= ∨ ∨ ∨…

Of course, we want to incorporate uncertainty into the picture. This is captured by a
particular model known as the Noisy-OR model. The general graphical structure for this
model is simply:

However, this graphical structure does not capture all the intricacies we specified in the
logical setting (In fact, the above graphical model is the same for Noisy-AND and many
other “Noisy” versions of logical gates). The concept of Noisy-OR must be captured in
the conditional probability table. It must have the following properties:

1. We want to model the probabilistic structure of OR such that (roughly) S=true if
any one of the diseases is present and S=false otherwise.

a. ()1 2| 0nP S true D D D false= = = = = =…

b. ()1 2| 1nP S false D D D false= = = = = =…

2. It seems bad form to say there is 0 probability of having a symptom… couldn’t
there be causes we’re not accounting for?

a. We assume we’ve accounted for ALL causes. Any miscellaneous causes
can be captured by an extra leak node.

3. Even if a cause (disease) is present, the effect (symptom) might be inhibited. This
is the uncertainty we wish to model.

a. Each cause can be inhibited with probability qi. Thus,

()1 2| ,n i iP S false D D D false D true q= = = = = = =…

b. We assume each cause is inhibited INDEPENDENTLY. Thus the
probability that we have Di and Dj but not S is given by:

()1 2| , ,n i j i jP S false D D D false D true D true q q= = = = = = = =…

4. Thus, the entire conditional probability table can be fashioned with only n
parameters 1 2, , , nq q q… rather than O(2n).

Note: there is an alternative graphical model that captures these assumptions explicitly
through auxiliary variables, but it’s not important for our purpose.

D1 D2 Dn

S

…

