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Dynamic Bayesian Networks (DBN) — a Bayesian network that represents a
temporal probability model by having state variat{eseplicated over time slices with
the same conditional independences. We also have evidence at each tifhe §lare
simplicity we assume &'Jorder Markov proces® a node’s parents are either in the
current or previous time slice.
» DBNs take advantage of the sparseness of the temporal probability model,
whereas the equivalent HMM assumes all internal state is dependent.
» DBNs can model arbitrary distributions (thus extending beyond the capalufities
a Kalman Filter) allowing it to capture nonlinearities other models cannot.
» Constructing DBNs
0 We need 3 broad types of information:

1. aprior distributioron the initial variables: P(X,)
2. atransition model P(X.11X,)

3. asensor model P(E |X,)

o In addition, we must specify a local and tempaosablogy of the nodes at
the current state and the nodes at the previotes sta
0 Since the transition & sensor models are assumbd stationary they
remain the same over tim2 only need to specify for initial time slice
0 Issues we need to deal with:
*» Noise we assume that our measurements are noisy, wigch
model with aGaussian error model
» Failure: in the real-world, sensors fail — we need to nhelie
effect.

* In order to properly handle sensor failure, the sensor
model must explicitly include the possibility of failure.

» transient failure model — allocates a probability that the
sensor will return some nonsense value. Thishmeffect
of “inertia” to prevent radical shifts due to intermediate
failures.

» persistent failure model — describes how a sensor behaves
under normal and failure conditions. In particuise have
a small probability of failure, but it also modéhe fact that
sensors tend to remain broken.
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» Exact Inference- given a sequence nfobservations, we simply construct the
necessary DBN af time slices — a process knownuas olling.
o But naively constructing the unrolled network regqaO(t) space and
inference at each time step increase3(t
o A more efficient process useariable elimination before proceeding to
the next time slice — this is equivalent to stgr@X; with a new initial
distribution determined by our variable elimination
» This process exactly mimics the operation of angea filtering
update. This allows us to have constant spaceimedoer slice.
» Unfortunately the constant is exponential in number of state
variables.
= We cannot efficiently and exactly reason about the complex
temporal processes represented by general DBNs.
* Approximate Inference to estimate inference on a DBN we need to oveeca
few obstacles:
o Overcoming these blocks relies on 2 observations.
= Again, unrolling the network is inefficient. Agaiwe run the
samples through the network one slice at a tikVe. use the
samples as approximate representations of the current state
distribution
» Generating the samples with naive likelihood werghtvill have
~0 probability of matching the evidence. Thus,.w.lthe samples
will be independent of the evidence and will haveareight.
* Thus, we require exponential samples to get acgurac
* Instead, we want to focus the set of samples on the high-
probability regions of the sate spac@é/e simply throw out
samples of very low weight.
o particle filtering — leverages the above observations to make areffi
sampling algorithm that isonsistent. We begin witHN samples from the

prior distribution at time OP(X,). Then we use an update cycle
» Each sample is propagated to next time slice bypBagithe next
state value; givenx; using the transition mod@(X,,, | X, ).
= Each sample is weighted by the likelihood it assignthe new
evidence:P(e,, | X.,) from the sensor model.

* A new population oN samples isesampledeach new sample is
selected proportional to its likelihood weight.
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Noisy-OR

Suppose there aredisease®; all of which cause a symptos In the classical logic
world, we might think that if you at least one bétdiseaseB; than you would have
symptomS and you wouldn’t have it otherwise. This is madeby the following logical
sentence (a simple OR-gate):

S=Q0OD0...0D,

Of course, we want to incorporate uncertainty thepicture. This is captured by a
particular model known as tidoisy-ORmodel. The general graphical structure for this

model is simply:

However, this graphical structure does not capailrihe intricacies we specified in the
logical setting (In fact, the above graphical madeéhe same foNoisy-ANDand many
other “Noisy” versions of logical gates). The ceptofNoisy-ORmust be captured in
the conditional probability table. It must have following properties:
1. We want to model the probabilistic structure of &Rh that (roughlyp=trueif
any one of the diseases is present@nfdlseotherwise.

a. P(S=trug D= D=...= Q= fals=0
b. P(S= falsd D= D=...= D= falsp=1
2. It seems bad form to say there is 0 probabilithafing a symptom... couldn’t
there be causes we’re not accounting for?
a. We assume we've accounted for ALL caugesy miscellaneous causes
can be captured by an exteak node
3. Even if a cause (disease) is present, the effgotg®om) might be inhibited. This
is the uncertainty we wish to model.
a. Each cause can be inhibited with probabiijty Thus,
P(S= fals¢ D= D=...= Q= false P= true= ,
b. We assume each cause is inhibited INDEPENDENTINGS the
probability that we hav®; andD; but notSis given by:

P(S= falsg D= D=...= Q= false D= true D= trl)e= iq
4. Thus, the entire conditional probability table denfashioned with onlg
parametersy, d,,..., q, rather tharo(2").

Note: there is an alternative graphical model thaptures these assumptions explicitly
through auxiliary variables, but it's not importaftdr our purpose.



