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Dynamic Bayesian Networks (DBN) – a Bayesian network that represents a 
temporal probability model by having state variables Xt replicated over time slices with 
the same conditional independences.  We also have evidence at each time slice Et.  For 
simplicity we assume a 1st order Markov process � a node’s parents are either in the 
current or previous time slice. 

• DBNs take advantage of the sparseness of the temporal probability model, 
whereas the equivalent HMM assumes all internal state is dependent. 

• DBNs can model arbitrary distributions (thus extending beyond the capabilities of 
a Kalman Filter) allowing it to capture nonlinearities other models cannot. 

• Constructing DBNs 
o We need 3 broad types of information: 

1. a prior distribution on the initial variables: ( )0P X  

2. a transition model:    ( )|t+1 tP X X  

3. a sensor model:    ( )|t tP E X  

o In addition, we must specify a local and temporal topology of the nodes at 
the current state and the nodes at the previous state. 

o Since the transition & sensor models are assumed to be stationary they 
remain the same over time � only need to specify for initial time slice. 

o Issues we need to deal with: 
� Noise: we assume that our measurements are noisy, which we 

model with a Gaussian error model. 
� Failure: in the real-world, sensors fail – we need to model this 

effect. 
• In order to properly handle sensor failure, the sensor 

model must explicitly include the possibility of failure. 
• transient failure model – allocates a probability that the 

sensor will return some nonsense value.  This has the effect 
of “ inertia” to prevent radical shifts due to intermediate 
failures. 

• persistent failure model – describes how a sensor behaves 
under normal and failure conditions.  In particular, we have 
a small probability of failure, but it also models the fact that 
sensors tend to remain broken. 
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• Exact Inference – given a sequence of n observations, we simply construct the 
necessary DBN of n time slices – a process known as unrolling. 

o But naively constructing the unrolled network requires O(t) space and 
inference at each time step increases at O(t). 

o A more efficient process uses variable elimination before proceeding to 
the next time slice – this is equivalent to starting at Xt with a new initial 
distribution determined by our variable elimination. 

� This process exactly mimics the operation of a recursive filtering 
update.  This allows us to have constant space and time per slice. 

� Unfortunately, the constant is exponential in number of state 
variables. 

� We cannot efficiently and exactly reason about the complex 
temporal processes represented by general DBNs. 

• Approximate Inference – to estimate inference on a DBN we need to overcome a 
few obstacles: 

o Overcoming these blocks relies on 2 observations. 
� Again, unrolling the network is inefficient.  Again, we run the 

samples through the network one slice at a time.  We use the 
samples as approximate representations of the current state 
distribution. 

� Generating the samples with naïve likelihood weighting will have 
~0 probability of matching the evidence.  Thus, w.h.p. the samples 
will be independent of the evidence and will have no weight. 

• Thus, we require exponential samples to get accuracy. 
• Instead, we want to focus the set of samples on the high-

probability regions of the sate space.  We simply throw out 
samples of very low weight. 

o particle filtering  – leverages the above observations to make an efficient 
sampling algorithm that is consistent.  We begin with N samples from the 
prior distribution at time 0: ( )0P X .  Then we use an update cycle: 

� Each sample is propagated to next time slice by sampling the next 
state value xt+1 given xt using the transition model ( )|t+1 tP X X . 

� Each sample is weighted by the likelihood it assigns to the new 
evidence: ( )| +t+1 t 1P e x  from the sensor model. 

� A new population of N samples is resampled: each new sample is 
selected proportional to its likelihood weight. 

 



CS 188 Week 11 11/9/05 

Noisy-OR 
 
Suppose there are n diseases Di all of which cause a symptom S.  In the classical logic 
world, we might think that if you at least one of the diseases Di than you would have 
symptom S and you wouldn’t have it otherwise.  This is modeled by the following logical 
sentence (a simple OR-gate): 
        1 2 nS D D D= ∨ ∨ ∨…  

 
Of course, we want to incorporate uncertainty into the picture.  This is captured by a 
particular model known as the Noisy-OR model.  The general graphical structure for this 
model is simply: 

 
 
 
 

 
 
However, this graphical structure does not capture all the intricacies we specified in the 
logical setting (In fact, the above graphical model is the same for Noisy-AND and many 
other “Noisy” versions of logical gates).  The concept of Noisy-OR must be captured in 
the conditional probability table.  It must have the following properties: 

1. We want to model the probabilistic structure of OR such that (roughly) S=true if 
any one of the diseases is present and S=false otherwise. 

a. ( )1 2| 0nP S true D D D false= = = = = =…  

b. ( )1 2| 1nP S false D D D false= = = = = =…  

2. It seems bad form to say there is 0 probability of having a symptom…  couldn’t 
there be causes we’re not accounting for? 

a. We assume we’ve accounted for ALL causes.  Any miscellaneous causes 
can be captured by an extra leak node. 

3. Even if a cause (disease) is present, the effect (symptom) might be inhibited.  This 
is the uncertainty we wish to model. 

a. Each cause can be inhibited with probability qi.  Thus, 

( )1 2| ,n i iP S false D D D false D true q= = = = = = =…  

b. We assume each cause is inhibited INDEPENDENTLY.  Thus the 
probability that we have Di and Dj but not S is given by: 

( )1 2| , ,n i j i jP S false D D D false D true D true q q= = = = = = = =…  

4. Thus, the entire conditional probability table can be fashioned with only n 
parameters 1 2, , , nq q q…  rather than O(2n). 

 
Note: there is an alternative graphical model that captures these assumptions explicitly 
through auxiliary variables, but it’s not important for our purpose. 
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