
15: Probabilistic Reasoning Over Time 

Modeling Uncertainty over Time 
• Setting 

o tX  - a set of unobserved state variables at time t. 

o tE  - a set of observable evidence variables for time t. 

o a:b – denotes an interval from a to b. 
• Stationary Process – process of change that is governed by laws that do not 

change over time. 
• Markov Assumption – current state depends only on a finite history of previous 

states.  Processes satisfying this assumption are Markov Processes (Chains). 
o transition model – law describing how state changes over time. 

( ) ( )0: 1| |t t tP X X P X Xα− =  where { }1 1tα ⊆ −…  

o first-order Markov Process – current state is solely dependent on the 
previous state 
� transition model: ( )1|t tP X X −  

• We assume the evidence variables at time t depend only on the current state. 
o sensor model – law describing how the evidence depends on the state. 

( ) ( )0: 0: 1| , |t t t t tP E X E P E X− =  

• prior probability for the initial state: ( )0P X  

• complete joint 
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• Ways to deal with inaccurate Markov modeling: 
1. Increase the order of the Markov process 
2. Increase the set of state variables 

 
Filter (monitoring) – the task of computing the belief state – the posterior distribution 
of the current state given all evidence; ( )1:|T TP X e . 

• Recursive estimation – forward chaining. 
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  ( )1: 1: 1,t t tf FORWARD f e−∝  

• When the state variables are discrete, this update is constant in space and time. 
• Likelihood ( )1:TP e  can be calculated by a likelihood message: ( )1: 1:,t t tl P X e= : 
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Prediction – task of computing the posterior distribution over a future state, given all 
evidence; ( )1:|T k TP X e+  where k > 0. 

• This is equivalent to filtering without new evidence.  Hence, we can easily derive 
the following update: 

( ) ( ) ( )1: 1 1 1:

recursive estimate

| | |
t k

T k T T k T k T k T
X

P X e P X X P X e
+

+ + + − + −=∑
�������

 

• stationary distribution – The fixed point of the Markov process that is 
approached upon successive applications of the transition model. 

o mixing time – the amount of time required to reach stationarity. 
o Prediction is doomed to failure for future times more than a small fraction 

of the mixing time. 
 
Smoothing (hindsight) – task of computing posterior distribution for a past state, 
given all evidence; ( )1:|k TP X e  where 0 k T≤ < . 

• Accounting for hindsight is done with an additional backwards message: 
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• The time and space needed for each backward message are constant. 
• Thus, the process of smoothing with respect to 1:Te  is O(t). 

• Thus, to smooth the whole sequence naively, requires O(t2). 
• using dynamic programming the cost is only O(t) by recording results of forward 

filtering over the entire sequence while running the backward algorithm from T to 
1 and use the smoothed message at each time step � forward-backward algo. 

o space is now ( )O f t  

• In on-line setting, smoothed estimates must be computed for earlier time slices as 
new observations are added:  

o fixed-lag smoothing – smoothing is done for the time slice d steps behind 
the current time T. 

 



Most Likely Explanation – task of finding the sequence of states most likely to 
have generated a sequence of observations; ( )

1: 1: 1:arg max |
tx t tP x e . 

• most likely sequence must consider joint probabilities over all time steps. 
• there is a recursive relationship between most likely paths to each state Xt+1 and 

the most likely paths to each state Xt. 
• Recursive formulation: 
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o messages: ( )
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o summation over Xt replaced by a maximization. 
• Pointers are used to retrieve the most-likely explanation 
• Viterbi algorithm has a space and time requirement of O(t). 

 
Learning – task of learning the transition and sensor models from observed data.  This 
process leverages inference through EM. 
 
Hidden Markov Models (HMM) – a temporal probabilistic model in which the state 
of the process is described by a single discrete random variable and transitions obey the 
Markov assumption. 

• transition model: ( )1|ij t tT P X j X i−= = =  

• observation model: ( ) ( ),
|t ti i

P e X i= =tO  

o forward message -  1: 1 1 1:
T

t t t+ +∝f O T f  

o backward message -  1: 1 2:k t k k t+ + +∝b TO b  

o time complexity of forward-backward becomes ( )2O S t  where S is the 

number of hidden states and space complexity is ( )O St . 

 



Kalman Filters – a temporal probabilistic model for continuous state spaces under the 
Markov assumption and using linear Gaussian distributions to model the states.  A 
Kalman filter can model any system of continuous state variables with noisy 
measurements. 

• a multivariate Gaussian distribution can be specified completely by its mean µ  
and its covariance matrix Σ . 

• In general, filtering with continuous or hybrid spaces generate state distributions 
whose representations grow without bound, but the Gaussian distribution is “well-
behaved” since it has the following properties: 

1. If the current distribution ( )1:|t tP X e  is Gaussian and the transition model 

( )1 |t tP +X x  is linear Gaussian, then the predicted distribution of the next 

step is: 

( ) ( ) ( )1 1: 1 1:| | |
t

t t t t t t tP P P d+ += ∫xX e X x x e x  

2. If the predicted distribution is Gaussian and the observation (sensor) 
model is linear Gaussian, then conditioning on new evidence yields the 
updated distribution: 

( ) ( ) ( )1 1: 1 1: 1 1 1 1:| | |t t t t t tP P P+ + + + +∝X e e X X e  

• General formulation: 

( ) ( )( )1 1| ,t t t x tP N+ +=x x Fx Σ x  

• F and xΣ  describe the linear transition model & noise. 

( ) ( ) ( )| ,t t t z tP N=z x Hx Σ z  

• H and zΣ  describe the linear sensor model & noise. 

• Updates: 

( )1 1 1t t t t t+ + += + −µ Fµ K z HFµ  

( )( )1 1
T

t t t x+ += − +Σ I K FΣ F Σ  

 

o Kalman gain ( ) ( )( ) 1

1
T T T T

t t x t x zK
−

+ = + + +FΣ F Σ H H FΣ F Σ H Σ  

• A measure of “how seriously to take the new observation” relative 
to the prediction. 

o predicted state at t+1 is tFµ , predicted observation is tHFµ , and error of 

predicted observation is ( )1t t+ −z HFµ . 

• Extended Kalman Filter (EKF) – allows for limited nonlinearity in the model by 
modeling the system locally as linear in tx  in the region of t t=x µ . 

 


