15: Probabilistic Reasoning Over Time

Modeling Uncertainty over Time
» Setting
0 X, - asetof unobserved state variables at time
0 E -asetof observable evidence variables for time

0 ab - denotes an interval froeto b.
» Stationary Process— process of change that is governed by laws that do not
change over time.
* Markov Assumption — current state depends only ofirate history of previous
states. Processes satisfying this assumptioklarkov Processes (Chains).
o transition mode — law describing how state changes over time.

P(X, | Xo1) =P(X, |X,) wherea O{1...t -1
o first-order Markov Process— current state is solely dependent on the
previous state
= transition model:  P(X,|X.,)

* We assume the evidence variables at tighepend only on the current state.
0 sensor model — law describing how the evidence depends onttie.s

P(E [ X0t Eora) =P(E X))
- prior probability for the initial state:P(X,)
* complete joint

P(Xor,Epr) = |‘JP (X X)) P(EIX)

» Ways to deal with inaccurate Markov modeling:
1. Increase the order of the Markov process
2. Increase the set of state variables

Filter (monitoring) — the task of computing thelief state — the posterior distribution
of the current state given all evidend®{ X; |& ).

* Recursive estimation — forward chaining.
P(X le) DP(& 1X) 2 P(X, 1X02) P(X1 feu-)
—_—

Xt recursive estimate

f,, O FORWARD ( f,_,,&)
* When the state variables are discrete, this updatenstant in space and time.
+ Likelihood P(eLT) can be calculated by a likelihood messdges P(X,,e,):

leT T’e:LT



Prediction — task of computing the posterior distribution oaéuture state, given alll
evidence;P (X, |e,) wherek> 0.

» This is equivalent to filtering without new evidencHence, we can easily derive
the following update:

I:)(XT+k |elT) = z I:)(XT+k |XT+k—l) I:)(><T+k—1 |elﬂ')
Kook recursive estimate
» dtationary distribution — The fixed point of the Markov process that is
approached upon successive applications of theitiam model.
0 mixing time — the amount of time required to reach statioparit
o Prediction is doomed to failure for future timesrsthan a small fraction
of the mixing time.

Smoothing (hindsight) — task of computing posterior distribution fopast state,
given all evidenceP (X, |e;) where0O<k<T.

» Accounting for hindsight is done with an additiobakckwards message:
P(X ler) O P(X, lew) P& 1X,)
fix Beorr

Q<+1:T = z P(Q«l' Xk+1) I:)(Xk+1 | Xk)h<+21’

Xk+1
» The time and space needed for each backward message are constant.
* Thus, the process of smoothing with respea tois O(t).

« Thus, to smooth the whole sequence naively, req@ités

» using dynamic programming the cost is 00Kf) by recording results of forward
filtering over the entire sequence while running the backward algorithmTitom
1 and use the smoothed message at each tim&stepwar d-backward algo.

0 spaceis noWD(| i |t)

* In on-line setting, smoothed estimates must be computed for earlier tisgeasic
new observations are added:
o fixed-lag smoothing — smoothing is done for the time sli¢steps behind
the current timd.



Most Likely Explanation — task of finding the sequence of states most likely to
have generated a sequence of observatiangsnay P(x11 Ien).
* most likely sequence must consider joint probaedibver all time steps.
» thereisarecursive relationship between most likely paths to each state X1 and
the most likely paths to each state X:.
* Recursive formulation:

maxP(X,, le,)OP(& [X,) maxP(X, Ki.) maR (X, &)

observation transition

previous message

0 messages: mlI:ranP(X11 le, )

0 summation ovek; replaced by a maximization.
» Pointers are used to retrieve the most-likely exgti@n
Viterbi algorithm has a space and time requireno@Qi(t).

L earning — task of learning the transition and sensor nwftem observed data. This
process leverages inference through EM.

Hidden Markov Models (HMM) — a temporal probabilistic model in which the stat
of the process is described bgiagle discrete random variable and transitions obey the
Markov assumption.

« transition model: T, =P(X, = j| X, =i)
* observation model: (O,), =P(g|X, =i)
o forward message - f,,, 00, T'f,
0 backward message -b,,,, 1 TO,,,b,,
o time complexity of forward-backward becom@sészt) whereSis the

number of hidden states and space complexi§(ist).



Kalman Filters — a temporal probabilistic model for continuousetspaces under the
Markov assumption and using linear Gaussian digiobs to model the states. A
Kalman filter can model any system of continuoagesvariables with noisy
measurements.

* amultivariate Gaussian distribution can be specified completely by itsam@
and its covariance matrix .

* In general, filtering with continuous or hybrid sea generate state distributions
whose representations grow without bound, but thesSian distribution is “well-
behaved” since it has the following properties:

1. If the current distributiorP (X, |e, ) is Gaussian and the transition model
P(X..1%,) is linear Gaussian, then the predicted distributibthe next
step is:

P(Xe.ley)= L P (X 1% )P (%, ley)dx,
2. If the predicted distribution is Gaussian and thsewvation (sensor)

model is linear Gaussian, then conditioning on egwence yields the
updated distribution:

P(Xt+1 |e11+1) 0 P(en+1lxt+1) P(Xt+1|el')
* General formulation:
P (X 1%,) = N(Fx, 2, (,,)
« FandX, describe the linear transition model & noise.
P(z |x,)=N(Hx,.Z,)(z)
« HandZX, describe the linear sensor model & noise.
* Updates:
ne, =Fp + Kt+1(zt+l_ HF“t)
£ =(1-K ) (FEF +x,)

o Kalman gain K,,=(FEF"+£,)H" (H(FEF" +L,)H +EZ)_1

* A measure of “how seriously to take the new obg@wmarelative
to the prediction.

o predicted state at t+1 Bp, , predicted observation idFp,, and error of
predicted observation ig,,, ~HFp,) .

» Extended Kalman Filter (EKF) — allows for limitedniinearity in the model by
modeling the systerocally as linear inx, in the region ofx, = p, .



