CS 188 — Final Review Topics

« Definitions of Atrtificial Intelligence have two primary bases:
1. intelligent thought processes and reasoning
2. human-like behavior
« Rationality — Property of an agent: “does the right thing” given its knowledge.
¢ Turing Test — artificial intelligence test proposed by Alan Turing requiring
indistinguishably of human and computer responses to questions posed.
« Total Turing Test — Addition of visual elements of response and perception.
« Approaches to Artificial Intelligence:
1. Cognitive Modeling- Al modeled on theory of human thought processes.
2. Laws of Thought- Al built on the logical laws as a basis for rational
thought processes.
= Inference is only one of several mechanisms for rationality.
3. Rational Agent- Al that acts to achieve the best expected outcome given
the observations perceived.
= Aclearly defined and completely general standard for rationality.

Intelligent Agents

Agent — anything viewed as perceiving @avironmenthroughsensorsand acting upon
the environment throughctuators
« general assumptiomn agent can perceive their actions but necessarily their effect
* percept— an agent’s percetual inputs at a given instance.
* percept sequence- the history of all that an agent has perceived.
« In general, an agent’s choice of action at any given time can depend on the entire
percept sequence thus far observed.
« agent function- a map from the precept sequence to an action

Performance Measure
« performance measure- asubjectivecriterion to measure the success of an
agent's behavior typically stipulated by the designer of the agent.
« Generally, it is better to design a performance measure according to what one
wants accomplished rather than how one thinks the agent should behave.

Rationality

« Rationality — behavior depending on 4 factors:
1. The performance measure defining “success”
2. The agent’s prior knowledge about the environment
3. The actions the agent can perform
4. The agent's percept sequence to date

« Rationality vs. Perfection— rationality maximizes expected performance while
perfection maximizes actual performance.

« rational agent— For each possible percept sequence, a rational agent should
select an action from its set of allowable actions that is expected to imeitisn
performance measure given the evidence of the percept sequence and the agent
prior knowledge about the environment.

o Information Gathering (Exploration) — actions taken specifically to
modify future percepts by increasing the agent’'s knowledge.
o learning — the process of modifying prior knowledge based on experience.
0 autonomy- the ability to compensate for partial or incorrect prior
knowledge thereby eventually becoming independent of prior knowledge.

Task Environments

task environment— the problem the agent is solving as characterized by
1) Performance Measug) EnvironmenB) Actuators4) Sensors- PEAS.

Dimensions of task environments
1) Fully Observable vs. Partially Observable
o fully observable — sensor’s detect all relevant aspects for choosing an action
2) Deterministic vs. Stochastic
o deterministic —completely determined by current state and agent’s action
0 stochastic— as though environment is random dependent on state and action.
0 strategic— environment deterministic except for other agent’s actions.
3) Episodic vs. Sequential
0 episodic— experience divided into atomic independent episodes.
0 sequential— current decision could affect all future decisions.
4) Static vs. Dynamic
0 static — environment doesn’t change until agent makes a decision.
o dynamic — environment doesn’t wait for agent.
o semi-dynamic— environment is static, but performance measure may change
during course of the decision.
5) Discrete vs. Continuous
6) Single agent vs. Multiagent
Hardest partially observable, stochastic, sequential, dynamic, continuous, multiagent.




Agent Structure

« Agent = Architecture + Agent Program
« Architecture — the machinery that an agent executes on.
* Agent Program - a concrete implementation of an agent function.
o Simple Reflex Agents- an agent that chooses actions only based on the
current percept.
= condition-action rule —maps a state (condition) to an action.
= Rational only if the correct decision can be made solely on the

basis of the current precept... the environment is fully observable.

0 Model-Based Reflex Agents- uses a model of the world to choose
actions.
= internal state — a representation of unobserved aspects of current
state dependent on percept history.
= model- knowledge about “how the world works”.
o Goal-Based Agents- an agent that chooses actions to achieve goals.
= goal— description of situations that are desirable.
o Utility-Based Agents— agent chooses actions based on a preference
(utility) for each state.
= utility function —a mapping of a (sequence of) state(s) to a real
number describing the “degree of happiness” of that state.

Learning - the process of modification of each component of an agent to make the
components agree closer with the available feedback thereby improving the agent’
performance.
« learning element— responsible for making improvements
« performance element- responsible for selecting external actions... the agent
being modified.
« critic — provides feedback on the agent’s performance and suggests
improvements.
o performance standard— afixed measure of agent’s performance.
= distinguishes theewardin the percept by providing direct
feedback on quality of agent’s performance.
« problem generator— suggests actions that will lead to exploration.

Problem Solving

e problem
o initial state— the initial configuration given as input to the agent.
0 actions— the set of actions (currently) available to the agent.
= successor functiosucc(s)- returns the set c(faction, state) tuples

that defines the nestateachieved by takingctionfrom states.
0 goal test- determines whether a state is a goal state.
= goal (state}- a state that is desirable to the agent.
o0 path cost-the numeric cost of a path reflecting a perfarcgameasure.
Typically defined as the sum of costs of each stethe path.

= step costc(x, a, y) - cost of actiora going from statex to statey.

« state space- the set of all possible states an agent could.be
« path — a sequence of states connected by a sequeacgafs.
« solution— a path from the initial state to a goal state.
0 optimal solution — the solution with minimal path cost.
« problem solving agent— an agent that attempts to discovepktionto a
problem so that following the actions in tisatutionwill lead to a goal.
o formulation — building a representation of the agent’s world.
= abstraction — the process of removing details about the world.
= goal formulation — defining goals to limit the agent’s objectives.
= problem formulation — defining the set of actions and states
relevant to achieving a goal.
0 search— takes groblemas input and returnssalutionto the problem.
0 execute- carrying out the actions recommended insihletion
« incremental formulation — a state is modified by operators that augmenstate
(add new components without altering old ones).
« complete-state formulation— every state contains all objects and are matlifie
by operators that alter the arrangement of thogertsh




Search

Terminology

« search tree (graph)- the path the search algorithm follows in expigrihe state
space via an initial state and a successor function

0 search node- a state from the state space which has a sucdesstion.
A node is comprised of the following:

1. state- the state the node represents

2. parent-the predecessor of the node.

3. action— the action applied to the parent to reach tliEno
4. path-costg(n) — the cost of the path from the initial state.
5. depth— the number of search steps along the path.

0 expanding a node generating a new set of states via the nodesessor
function. A node is not checked to be terminallinis expanded.

o Note that several nodes in the search tree mayicothite same states,
generated by different paths. Henites search becomes a graph in state
space.

« search strategy- the methodology for choosing the next node tmaed.
« fringe — the collection of nodes generated but not yeaedpd.

o this collection typically imposes an ordering oniethnodes in the

collection will be expanded next based on a prefsge> queue

Assessing Algorithms

* Performance Measures for our algorithms:

o completeness- Is algorithm guaranteed to find an existing soh?

o optimality — Does the algorithm find the optimal solutiorsf#

o time complexity — How long does it take to find a solution

0 space complexity- How much memory is needed to find a solution?
¢ Relevant quantities:

0 branching factor b — maximum number of successors of a node.

o d- depth of the shallowest goal node.

o0 m- maximum length of any path in the state space.
« path cost— a function used to define a numeric cost to gath.

Uninformed (Blind) search - search solely on the basis of being to expaed th
successors of a state and being able to distinguigial-state.

Criterion | BFS Uniform  DFS DLS Iterative  Bidirect.
Complete]  Yes' Yes? No No Yes Yes?
Optimal? Yes Yes No No Yed Yes#
Time o(b™) O(b(cvsl) o(")  o(B)  oftY) o)
Space o(b™) o(bfc'/ew) o(bm) o(bl) O(bd)  O(b"?)
1. complete ib is finite. 2. complete if step cost is at leastO.

3. optimal if step costs are all identical. 4bdth directions use BFS.

* Breadth-first Search — all nodes at a given depth in the search treexpanded
before any of the nodes at larger depthemplemented with FIFO queue

« Uniform-cost Search— expands the next unexpanded node withaivest path
cost-> implemented by a priority queue. When costs gtek becomes BFS.

« Depth-first Search— always expands tltepeshode in the current fringe of the
search tree (search backs-up when path unsucgessfoiplemented by Stack.

* Depth-limited Search— depth-first search with a predetermined dejptiit Ii.
Becomes DFS wheh=.

« lterative Deepening Depth-first Search- iteratively repeated depth-limited
search whereis increased by 1 on each iteration from an ittdue of 0. This
combines the benefits of BFS and DFS.

« Bidirectional Search— simultaneous searches from the initial statedod and
from the goal state backwards that stop when tseaPches meet. Encouraged by
the fact thath®’? + b*'? <« b°

« Avoiding Repeated StategGraph Search)— avoiding repeated visits to sthtgs
have already been visited can result in substesdighgs in space and time.
Algorithms that forget their history are doomede¢peat it.

Searching with Partial Information

¢ Sensorless (Conformant) Problemsagent has no sensors.
o0 belief state— a set of states representing the agent’s h#fliwhat states it
might be in. In general, environment®$tates hag® belief states.
0 coercion— executing actions that cause the agent’s bsthéé to collapse
to a certain set of states.
= solution— coercing the belief state to a set of all gtetes.
« Contingency Problems- environment is partially observable or the ootemf
an agent’s actions is uncertain.
0 adversarial — uncertainty is caused by actions of other agents
0 contingency plan- trees of decisions made based on the curreof set
percepts made after the last action.
o Agent can act before finding a guaranteed plan
= idea of acting and seeing what contingences agtadbe.




Informed Search - use problem-specific knowledge to improve search
* Best-First Search— general Tree (Graph) Search where node’s agetedl based
on an evaluation functioffn) — cost of cheapest path to goal through node n.
* Greedy Best-First Search- Assume$(n) = h(n); a heuristic function.
0 susceptible to false starts
0 not optimal; incomplete.
0 Worst case time and space: &b

A* Search —f(n) = g(n) + h(n)whereg(n) s the cost to reach the nodandh(n)is a
heuristic function estimating the cheapest cost goal throug.
« A*is optimalif h(n)is anadmissible{ consistenfor Graph-Search} heuristic.
¢ A*is complete
« If h(n) is consistentthe values of f(n) along any path are nondecngéasi
* A*is optimally efficient for any given heuristic since any algorithm thaésh't
expand a node n witki (n) < C* might miss the optimal solution.

Heuristic Functions

¢ Heuristic Function h(n) — estimated cost of cheapest path to goaltir node n.

« Admissible Heuristic— h(n) never overestimates the cost to reach a goal

« Consistent (Monotonic) Heuristic— h(n) is not more than the cost through n to
n’ plus h(n’). Thus, a general triangle inequality

h(n)< c(nan)+ H )

« Dominance- a heuristic his said todominate another heuristic f, for any
node n,h(n)=h(n).

* Relaxed Problem- a problem with fewer restrictions on the actialiswable in
the problem domainThe cost of an optimal solution to a relaxed prabis an
admissible heuristic for the original problem!

* MultiHeuristic: if we have a set of heuristi@q} we can combine them into a

single heuristic: h(n) = ma)g{ h( n)} if{h} is admissibleh is admissible.

Local Search

» Local Search Algorithms— When the path to reach goal is irrelevant, local
search are methods for only maintaincugrent stateand (generally) only
moving to its neighbors. Often used in optimizasievhere the goal is to
minimize a objective function.

0 state space landscape the space of possible states defined by a
“location’ corresponding to state and @lévatiori corresponding to an
evaluation, cost, or objective function.

o complete local search- always finds a goal (if any exist)

optimal local search— always finds the global min/max.

o greedy local search- moves to “good” neighbor without considering
future.

o

Hill-Climbing Search — Always moves in “uphill” direction to maximize
objective only searching amongst immediate neighbbcurrent state and
terminating when no improvements can be mexigreedy

o Problems: 1) Local Max/Min 2) Ridges 3) Platea

o sideways moves moves along “flat” objective to get off plateau.

Simulated Annealing— Hill-Climbing with random walk.

o Candidate mov@ is randomly selected. If candidate is uphillsialways
accepted. Otherwise, it is accepted with a prditykixponentially
decreasing with “badnes&E and decreasing as temperature T is
lowered-> Boltzmann Distrubution

P(n.,=8)=min(Lex{AE(s) )

o If the scheduldor T cools “slowly enough”, simulated annealirigds
global optimum with probability approaching 1.

Local Beam Search- maintains th& “best” successor states; an approach more
powerful thark independent searches since information effectipakses
between the “search threads.”

Genetic Algorithms — A variant of stochastic beam search in whiclcessors
are generated through combinations of 2 curretgesta
o0 population — thek states maintained by the algorithm
o individual — an instance in the state space.
o fitness function— an evaluation function that returns higher vsifoe
better states.
o Essence of Algorithm
= Parents are randomly selected with probabilitietan fithess.
= Crossoverpoints are selected randomly in accordance with th
rules of the state.
= Random Mutation occurs in each successor wéthrobability.
Continuous Spaces
o0 Gradient Descent (Ascent}- moves the current solution in the direction
of the gradient in the state-space landscape.

Gradient - 0f :[i i i]

ox 0%, ox,
Update- x — x+a0f (x)




adversarial search (games) - competitive multiagent environments (agent'sehav
conflicting goals). In particular, adversarial s@ais mixture osearchandgame theory
The typical game is deterministi¢ turn-taking two-playerzero-sumgame ofperfect
information. These games are a sequence of decisions tichtatarminal state
¢ game tree— a representation that represents all legal segseof decisions.
o root — theinitial stateof the game (with a starting player).
o (internal) nodes —represents decision made by one of the players. Th
node is labeled by the player making the decididax{Min).
0 edges -egal choices for a given decision in the tredede are specified
by asuccessor functiothat lists legalriove statg pairs.
o terminal node —an ending of the game givingudlity to each player.
= utility function — maps a terminal state to a value.
« optimal strategy — a contingent strategy that leads to an outcdrteast as good
as any other strategy by assuming the opponentakible.
0 minimax algorithm- finds an optimal strategy by depth-first exhauest
search which annotates each node of the tree witinienax-value:

utility (n) nO Termina
minimax- valugn) = e minimax- valye) nd MAX
min minimax- valugs) nO MIN

schild( )
« alpha-beta pruning — a modified minimax search that prunes branches that
cannot influence the final result.
0 o - the maximum value so far at any choice point along the path for MAX
0 [ -the minimum value so far at any choice point along the path for MIN
Stopping search prematurely— time limits prevent full exploration of the game tree.
« evaluation function — a heuristic for accessing the utility of a nonterminal game
state; that is, it returns an estimate of the expected value of a state.
¢ cutting-off search— determine a reasonable time to stop searchiterative
deepeningexplores deeper until time elapses).
Games of Chance
« chance nodes- nodes (denoted by circles) indicating an element of chance is
introduced and arcs from this node are probabilistic transitions
o The minimax algorithm is identical & chance nodesexgected values:
expectiminima{n) = Y P(s)Jexpectiminimgxg ri Chanc
s]chi\d(n)
= |n games of chance, the evaluation functimst be aositive
linear transform of the probability of winning from a position.
Games of Chance witiimperfect information
* averaging over clairvoyancy -the strategy of computing optimal moves by
averaging over possibilities for the unseen vaeiabl
o This strategy is flawed as it assumes all futureediainty will have
disappeared by the time the future is reached.
* belief states— games states are replacegbygsiblestates along with their
corresponding probabilities.

Propositional Logic

Knowledge-Based Agents

logical agents are always definite — each propmsis either true/false or
unknown (agnostic).
knowledge representation language (KRL) -expresses world knowledge.

o declarative approach -language is designed to be able to easily express

knowledge for the world the language is being im#ated for.

o procedural approach —encodes desired behaviors directly in code.
sentence -a statement expressing a truth about the worlldarKRL.
knowledge base (KB) -a set of KRL sentences describing the world.

o background knowledge —nitial knowledge in the KB

o knowledge level -we only need to specify what the agent knows and

what its goals are in order to specify its behavior

o Tell(P) —function that adds knowledge P to the KB.

o0 Ask(P) —function that queries the agent about the truth.of
inference —the process of deriving new sentences from thevietdge base.

o When the agent draws a conclusion from availalfiermation, it is

guaranteed to be correct if the available informatis correct.

syntax —description of a KRL in terms of well-formed sentes of the language.
semantics -defines the truth of statements in the KRL wedch possible world.
model —the “possible world” that is described by a KB.
o model checking —-enumeration of all possible models to ensuredhat
true in all models in which KB is true.
logical inference —the process of using entailment to derive conchssi
logical entailment —the concept of 1 sentence following from anothetesgce:
al=p if ais true, then3 must also be true.
Note: while similar to the notion of implicatiomtailment is a meta-
statement, not a part of the language itself. Tagtatements using
entailment are used to describe other logical stegets.
0 Monotonicity— a set of entailed sentences can amyeasein
information as information is added to the knowledgse.
KBlFa = KBOSEa«a
derivation — if an inference proceduiecan deriver from KB,
KB|—a
sound (truth-preserving) inference —an inference procedure that derives only
entailed sentences.
o if KB is true in the real world, the any sentercderived from KB by a
sound inference procedure is also true in the readdv
complete inference -an inference procedure that can derive all emtaiéntence.
grounding —the connection, if any, between the logical reaspprocesses and
the real environment.




Propositional Logic
« atomic sentence 4ndivisible syntactic elements consisting of a singl
propositional symbol TrueandFalsehave fixed meaning.
« complex sentence sentence constructed from other sentences joinéagimal
connectives:
o logical connectives:
= not - —negationand [ —conjunctionor [J —disjunction
* implies = —implication (¢ = 8) =(- o 0B)) Note: ifais
false,a = £ says nothing aboys.
= jfand onlyif = —biconditional
o order of operations (high->low): -,0,0,=,
« Every known inference algorithm for propositionalimhas a worst-case
complexity exponential in the size of the input.
« logical equivalence two sentences andf are logically equivalent if they are
true in the same set of models.
a=p - aFBUBFa
« validity — a sentence is valid if it is true in all models.
0 tautology —sentences that are necessarily true.
« Deduction Theorem —For any sentences andf, a |= £ if and only if the
sentencer = S is valid.
« Satisfiablility — a sentence is satisfiable if it is true in some rhode
o Determining satisfiablity in propositional logic iéP-complete.
o Proof by contradiction (refutation): a |= 8 if and only if the sentence
= (a = B) or rather(a 0~ B) is unsatisfiable.

« inferentially equivalent — two sentencesg andf are inferentially equivalent if
the satisfiablity ofa implies the satisfiablity off and vice versa.

Reasoning Patterns in Propositional Logic
Common Patterns

Modus And Bidirectional Resolution
Pones Eliminate
Premises | g=p, a| aOpf a-p 0,0...00, ¢
Conclusion B a (e=p)0(B=a) | (,0..0(,0¢,0...0¢

Full Resolution Rule
¢, 0...00, mO..0m,

(,0...0¢,,0¢4,,0...0¢ 0m0...0m_,0m,,0...0 m
where (; andm; are complementary literals

1+1

« conjunctive normal form (CNF) — every sentence of propositional logic is
logically equivalento a conjunction of disjunctions of literals.

(1,0..00,)0..00,,0..0,,)

Eliminate biconditionals: a « £ (a=pB)0(B=a)
Eliminate implications a=p = -alp
Move - inwards
Distribute O over [J.
« A complex sentenagn always be represented in CNF.
1. literal — atomic sentence (positive) or negated atomic sentence (negative).
2. clause- a disjunction of literals
3. sentence- a conjunction of clauses.
« Definite Clauses- disjunction of literals of which exactly one is positive.
-n0..0-n,0p = nO.0n= p
NI R

body head

Ll A

head - the positive literal.
body — the negative literals; the premises.
fact — a definite clause with no negative literals.
Horn clause (integrity constraint — a disjunction of literals at most one of
which is positive. Horn clauses have the following advantages:
= Inference can be done with forward/backward chaining.
= Deciding entailment ifnear in the size of the KB.
« resolution — asoundinference algorithm based on the resolution rule.
o By applying the only the resolution rule, any complete search algorithm
can derive any conclusion entailed by any KB in propositional logic.
o refutation completeness- resolution can be used to confirm or refute any
sentence, but it cannot enumerate all true sentences.
0 resolution algorithm
= to showKB|=a we will show thatKB - ¢ is unsatisfiable.
= KB[-a is converted into CNF... a sequence of clauses
= The resolution rule is applied to resulting clauses... each pair with
complementary literals is resolved into a new clause.
« if no new clauses can be addeds not entailed.
« if the empty clausé} is derived, a is entailed.

O o0ooo




« forward chaining — asoundandcompletenference algorithm (for Horn clauses)
that is essentially Modus PoneShis algorithm iglata-driven reasoning
reasoning which starts from the known data.

o AND-OR graph — represents the derivation by a graph of literals.
Disjunctions are represented by converging links and conjunctions are
represented by multiple links joined by an arc.

P
VS NPAN
Q-P POQ POQ

« backward chaining — asoundandcompletenference algorithm (for Horn
clauses) based on Modus Pan&sis algorithm igjoal-directed reasoning
reasoning that works backward from the goal.

Satisfiability
« Davis-Putnam algorithm — an algorithm for checking satisfiability based on the
fact that satisfiability is commutative. Essentially, it is a DF$oe ofmodel
checking
0 Heuristics
= early termination — short-circuit logical evaluations. A clause is
true ifanyliteral is true. A sentence is falsaify clause is false.
= pure symbol heuristic— a symbol that appears with the same sign
in all clauses of a sentence (all positive literals or negative ones).
« Making these literalfrue can never make a clautsdse
Hence, pure symbols are fixed respectively.
= unit clause heuristic— assignment of true to unit clauses.
* unit clause— a clause in which all literals but one have
been assigned falseé 1 way to make clause true.
¢ unit propagation- assigning one unit clause creates another
causing a cascade of forced assignments.
¢ WalkSAT - a local search algorithm based on the idea of a random walk that
randomly alters the current assignment basedromaonflictsheuristic.
o If a satisfying assignment exists, it will be found, eventually.
0 WalkSAT can not guarantee a sentence is unsatisfiable.
« Hard Satisfiablility
0 Letmbe the number of clauses amtle the number of symbols.
o The ratiom/nis indicative of the difficulty of the problem.
= underconstrained- relatively smalm/nthus making the expected
number of satisfying assignments high.
= overconstrained— relatively highm/nthus making the expected
number of satisfying assignments low.
= critical point — value ofm/nsuch that the problem is nearly
satisfiable and nearly unsatisfiable. Thus, the most difficult cases
for satifiablity algorithms

Propositional Logic Agents

« inference-based agent an agent that maintains a knowledge base of
propositions and uses the inference procedures described above for reasoning.
o Itis beyond the power of propositional logic to efficiently express
statements that are true for sets of objects — FOL.
o A proliferation of clauses occurs due to the fact that a different set of
clauses is needed for each step in time.
« circuit-based agent —a reflex agent in which percepts are inputs to a sequential
circuit — a network of gates (logical connectives) and registers (sthevalue
of a single proposition)
o dataflow — at each time step, the inputs are set for that time step and
signals propagate through the circuit.
o delay line— implements internal state by feeding output of a register back
into the register as input at the next time step. The delay is represented as
a triangular gate.




First-Order Logic

Differences in Logics

¢ Ontological Commitment— What the logic assumes about the state of reality.
« Epistemological Commitment -the possible state of knowledge a logic allows
with respect to each fact.

Language Ontological Epistemological

Propositional Logic Facts T/F/unknown

1%-order Logic Facts, objects, T/F/lunknown
relations

Temporal Logic Facts, objects, T/F/lunknown
relations, time

Probability Theory Facts Degree of belief

Fuzzy Logic Facts with degree of Known interval value
truth

Syntax of First Order Logic

* Objects: the domairof the model is the set of objects in# constantsymbols.

* Relations a set of tuplesf objects that are relate® predicatesymbols.

« Function: an object can be related to exactly 1 object. Functions in FOL must be
total functionsthat must be defined over the whole dom@irfunctionsymbols.

o Thearity of a relation or function is the number of arguments it takes.

« intended interpretation — the interpretation specify what each symbol actually
represents in the real world.

« term — a logical expression that refers to an object.

o0 ground term — a term with no variables.

« atomic sentence- a predicate symbol followed by a parenthesized list of terms;
the arguments. An atomic sentence is true (under the given interpretation) if the
predicate holds for the objects given as arguments.

« complex sentence- atomic sentences joined by logical connectives.

« quantifiers — allow us to express properties of groups of objects.

o Universal Ox P(X) -for all objects x, P(x) holds. P(x) usually formed
with connective ==>.
o Existential [k P(x) - there exists an object x, such that P(x) holds.

Typically used with the connective AND.
¢ Equality — Asserts that two statements are equivalent.

Semantics of First-Order Logic

« assertion— sentences that assert what is known about the world.
« queries (goals)- questions asked to the KB. Answered in a list of substitutions
that satisfy the query.
¢ substitution (binding list) {x/ X} - set of variable/term pairs that represent
substituting the terrX for the variable.
0 SUBST8,a) applies the substitutiofito sentencer.

« axiom - basic factual information from which conclusi@we derived. Each
axiom cannot be entailed by the KB without explycihcluding it.

« theorems- facts entailed by the axioms.

* perception —the reasoning process by which percepts are etaden the KB.

Types of rules in FOL

« synchronic— sentences relating properties of a world statgtier properties in
the same world state.
o Diagnostic Rules Head from observed effects to hidden causes.
o Casual Rules -hidden properties cause observed precepts.
0 Model-Based Reasoning Systems that use casual rules to model the
world.

« diachronic - sentences relating properties of a world statgher properties in
another world state; thus allowing reasoning actioss.

« If the axioms correctly and completely describewlag the world works and the
way that percepts are produced, then any compbefiea! inference procedure
will infer the strongest possible description af thiorld state given the available
precepts.

Knowledge Engineering - process of constructing a knowledge base.
Identify the task

Assemble relevant knowledgeiowledge acquisition

Decide on vocabulary of predicates, functions, emmstants ontology.
Encode general knowledge about the domaaiems

Encode a description of the specific problem instan knowledge base.
Pose queries KB and get answers.

Debug the knowledge base.

Nogak,rwnE




Inference in First-Order Logic

The question of entailment for first-order logicsemidecidable- algorithms exist that
are able to correctly identify every entailed sewt but no algorithm can correctly
identify every nonentailed sentence.

Fundamentals

« Converting quantified statements
o Universal Instantiatior substitute variable of a universally quantified
statement with a ground term. Can be applied tepgba
v a

suBsT({v /g} a)
o Existential Instantiatior substituting a ground term, Skolem consttort

the variable in an existential statement. Can belapplied once!
v a
SuBsT({v /i a)
If the Existential quantifier is embedded in a wnsally quantified
statement, you must use a skolem functibthe universally quantified
variables.
* Propositionalization — the process of converting a first-order senteiim®
propositional logic.
0 a propositionalized KB imferentially equivalento the original KB but
notlogically equivalent
¢ Conjunctive Normal Form — a conjunction of clauses where each clause is a
disjunction of literals.
o Every sentence in FOL can be converted into améntelly equivalent
CNF sentence.
o Conversion to CNF:
1. Eliminate implications usingp=q = -pdq
2. Move - inwards in quantified statements.
3. Standardize Variables eliminate repeated names.
4. Skolemization removal of existential quantifiers with Skolem
functions (for every enclosing universal quantifiariable) or
Skolem constants.
5. Drop universal quantifiers.
6. Distribute LI over .

« Unification — the process of finding substitutions that makemnt logical
expressions look identical. Given two sentenpes)dg, UNIFY returns the
most general unifief, if a unifier exists.

UNIFY (p,g)=68 | SUBST(@,p)= SUBSTE ¢

o standardizing apart renaming variables to avoid name clashes.

0 most general unifier for every unifiable pair of expressions thera is
unique unifier that is more general than any other.

= A unifier ismore generathan another unifier if the first places
fewer restrictions on the values of the variables.

o0 occur check- when matching a variable against a complex tema,must
check whether the variable itself occurs in thenten which case the
unification fails.

* Generalized Modus Ponens- A lifted version of Modus Pones for FOL. For

atomic sentences,p’, and g, wheredg(0i  SUBST(6 p;) = SUBSTE p))

P, P B( RO pO...0 p= ¢
SUBST(4, §

Forward Chaining - Uses Modus Ponés infer new atomic sentences in the KB
until no more inferences are possible. This apgrassoundand iscompletefor definite
clauseKBs. FOL Inference with definite clausesamidecidablelue to functions.

« Datalog KB- set of first-order definite clauses with no ftioe symbols.

« fixed point- a state of the KB for which no further senterzas be inferred.

Backward Chaining — works backwards from the goal, matching theatffef rules
to support the desired proof based on Modus Pohés a DFS searc#® linear space
complexity; repeated states and incompleteness.
¢ Algorithm outline:
o Alist of unsatisfied goals is kept as a stackprleflach branch of the proof.
o If all goals of the stack are satisfied by theiahistate, the proof succeeds.
o Goals are popped off the stack and if unsatisfied:
= Every clause whodeeadunifies with the goal makes a separate
branch of the proof.
= Thebodyof each such clause are added to the stankw branch
* Problems with Backward Chaining
1. Repeated Statesinference can be exponential in number of grdants.
= memoization— caching solutions to subgoals for reuse.
2. Infinite Paths—makes backward chaining incomplete.




Logic Programming - logic is expressed as formal declarative languagl used to
solve problems via inference.
« Prolog- logic PL with depth-first backward chaining.
0 Rules expressed as follows:
p=n,..n. = nl.0On=r
o Built in arithmetic functions and some predicataséside-effects
o Negation as failure— if a goalP can not be proved; P is considered
true.
0 Occur Check is omittee® unsound.
o Prolog can be compiled or interpreted.
= compiled— a miniature theorem prover is created.
= interpreted- intermediate language executed by Warren Alstrac
Machine.

Generalized Resolution - an extension of propositional resolution to FOL.
« Proof by contradiction — The goal is negated and added to the KB. If thetgm
clause {} is derived, the goal has been proved.
o Proofs derived in this way ar@n-constructivethey only indicate
whether the query is true or false, not what vdesinake it so.

1. Restrict query variables to a single binding anckbrack.

2. Add ananswer literal as a disjunction with the negated goal. The
resulting non-constructive proof will have a disjtion of possible
answers instead of an empty clatsenultiple answers.

« Algorithm outline
o Begin with_propositionalizatioand conversion to CNF.
o Binary resolution can be applied to clauses wittngigmentary literals.
o The Resolution Inference Rule

= First-order literals are_ complementarone unifies with the
negation of the other.

= hinary resolution rule:

0.0, m0O..0m,

suBsT(6),0...01,, O, 0...0, (m,0...0m,_,0m,,0...0m)
WhereUNIFY(Ii,—'ng):H

= factoring — reduces two literals to one if they are uniféabl
« Together, thdinary resolution ruleandfactoringare complete.
« Completeness of Resolutior If S is an unsatisfiable set of clauses, then th
application of a finite number of resolution stéps will yield a contradiction.

Acting Under Uncertainty

Agents almost never have access to all of theirenment’s information.
o0 This qualification problem is due to 3 things
1. Laziness — too much work to explore all possitditie
2. Incomplete Theory
3. Practical Limitiations — not all tests can be perfed
0 Must be able to derive a plan that will work moftte time.
0 In uncertain environments, the rational decisiopesels on
1. The relative importance of various goals
2. The likelihood and degree of achievement of eact go
Agent’s knowledge provides a degree of befefProbability Theory
o Probability Theory provides the degree to whiclagent believes a
statement given all plausible alternative situaitrat are
indistinguishable from the current situation.
o Probability Theory has the same ontological comreittvas logic
= Facts either hold or do not hold in the world
o Probabilities depend on the evidence (preceptsgleat has aquired.
Agents must have preferences towards the outcofréerent plans.
o Utility Theory — Theory of preference based on an object’s wtilit
= Preference indicates that different agents mighe luifferent
goals so while goals might seem misguided, theyate
necessarily irrational.
o Decision Theory— Combination of Probability and Utility Theory.
= Principle of Maximum Expected Utility - An agent is rational iff
it chooses the action that yields the highest ebelegtility
(averaged over all outcomes).
Belief State— a representation of probabilities of all possibttual states of the
world.




Probability Theory

« Language of Probability — ascribes degrees of biipropositions.
0 Random Variable — refers to part of the world with initial unknowtatus
0 Domain - the values a random variable can take on.
= Boolean - true/false
= Discrete — countable, mutually exclusive, and exstige.
= Continuous — uncountable
o Atomic Event — a specific complete specification of the wortbat
which the agent is uncertain.
= The set of atomic events is mutually exclusive exishustive>
forms a partition
= Any atomic event entails true/false for every prsifion.
= Any proposition is equivalent to the disjunctionaifatomic
events that entail the proposition as true.
« Prior Probability P(x) — the degree of belief of proposition x in theatrs of
any evidence about other propositions.
0 Probability Distribution , P(X) — the vector of probabilities ascribed to
each of the possible states of proposition X.
o Joint Probability Distribution , P(X,Xz,...,Xn) — the probabilities of all
combinations of values of variableg, X, ..., X.
o Full Joint Probability Distribution — includes the complete set of
variables for the environment.
o Probability Density Function, p(x)dx — The probability of a continuous
variable on the interval [x,x+dx] in the limit ag & O.
« Conditional Probability P(x]y) — the degree of belief in proposition x given the
evidencey.
¢ Product Rule: P(X,Y)=RX|Y)YRY
« Kolmogrov’s Axioms
1. All probabilities are between 0 and 1:

0<P(a)s1
2. True propositions have probability 1; false profioss have O:
P(true) =1 P( falsg=0
3. Probability of a disjunction is given by
P(alb)=P(d+ A - K a b
« Using these Axioms we can derive other importalesiu
o Letadiscrete variable X have a domfig, x,,..., x} or x:

gP(X:x):l or IP(x)dle

o The probability of a proposition is equal to thensof the probabilities in
which it holds; the sek(a) for proposition a.

P(a)= 2. P(e)

§7e(a)

« In probability, statements do not refer directlytiie world, but rather to an
agent’s belief about the world, so why can't agebgliefs violate the probability
axioms?

o de Finetti Theorem— If Agent 1 expresses a set of degrees of btlaf
violate Kolmogorov’s Axioms, then there is a cordtion of bets Agent 2
can place that guarantees that Agent 1 will loseeyavery time.

« Probability Philosophy

o Frequentist— probabilities are results of repeated experiments

o0 Objectivist — probabilities come from a propensity of objeotact in a
certain way.

0 Subjectivist — probabilities are a way of characterizing bslief

Probabilistic Inference — computation of posterior probability of querppeosition from
observed evidence.
* Marginalization (Conditioning) — variables other than the query variable are
summed out in order to obtain the probability &f tjuery variable:

joint: P(Y)=ZZ: P(Y, 3
conditional: P(Y)ZZZ: P(YI3 R}

¢ Normalization — introduction of constartt that normalizes the distribution to 1.

(Marginal) Independence —variables independent of each other can be factored
P(XY)=RA(X)KY  RXAY= bX
« If a complete set of variables can be divided intependent subsets, then the
full joint distribution can be factored into sep@ajoint distributions on those
subsets.

Bayes’ Rule— application of product rule that allows diagnosteliefs to be derived
from casual beliefs:
p(v] X):P(XlY) A Y) RV X b= HXYEPY)
P(X) P(X1 ¢
« Diagnostic knowledge is often more fragile thanued&nowledge® direct
casual (model-based) knowledge provides robustmesded for probabilistic
systems to function in the real world.
« Conditional Independence — implies that two vagabX,Y are independent given
variable Z:

P(XYIZ=AXI3RME EAYE PX)

Naive Bayes Mode} a single cause Y directly influences a numbeveints Xthat are
all conditionally independent given the cause:

P(Y. X %0 %)= HOY[T B XY




Probabilistic Reasoning

Bayesian Network(Belief Network, Probabilistic Network, Casual Metk, or
Knowledge Map)

o A directed acyclic graptiDAG) representing the dependency structure
amongst random variables thus providing a congiseification of any
full joint probability distribution.

= Nodes- the random variables of the problem (observe@dbies
are shaded).
= Each node Xhas a conditional probability distribution

representingD( X | parent:{ )l()) In the discrete variable case,

this can be represented by a Conditional Probgfikble (CPT).
= Directed Arcs — represent the dependency of one random variable
on another. In the Undirected case, represergsdiependency
between two variables.
o The Bayesian Network captures conditional indepecéeelationships in
its edges.
o Probabilities summarize a potentially infinite sétircumstances that are
not explicit in the model but rather appear implycin the probability.
o If each variable is influenced by at most k otrerd we have n random
variables, we only need to specify fif@obabilities instead of'2
0 More general case of Bayesian Network is “GrapHitadiel”.
Conditional Probability Table (CPT) - describes the conditional probability of
each value of the node for eagtnditioning casgor possible combination of the
values of the parent nodes.
0 In general the size of the table is
#(X,)0 #(x;)
X Oparent§ X)
where #() specifies the size of the domain of sabée.
0 The size of the table can be reduced since thepathability for each
conditioning case must be 1.
Chain Rule:
o General:

P( Xy Xpooe >g)=|j XX, Xes X))

o0 Inthe case of a BN, if we number the nodes in fmgioal order, the
conditional terms irP( Xl Xy Xy eens X_l) are all predecessors of ahd

thus, conditional independence reduces thiE@(Xi | parentz{ ),())
o Chain Rule in BN:

P(X,, xz,...,>g)=lj A X | parenté X)

Constructing a Bayesian Network
o The parents of node; Xhould be all nodes that directly influencefiém
the set of nodesX..., Xi.1.
o The correct order in which to add nodes is to &ed‘toot causes” first,
then the variables they influence, and so on ledies are reached.
o Slight dependences may not be worth adding duscteased complexity.
o Constructing Networks for a “Causal Model” will tdsin specifying
fewer numbers, which are often easier to come tip. wi
Independence in a Bayesian Network
o0 A node is conditionally independent of all non-dastants given its
parents.
o A node is conditionally independent of all othedes in network given its
Markov Blanke{parents, children, and children’s parents).
o d-separation—two nodes X and Y in a BN are d-separated ifepath
between X and Y is blocked.
= A path between X and Y is blocked if it has anyta following 3
cases for any 3 nodes along the path.
¢ head-to-tail with intermediary observed:.(1 B| C
¢ tail-to-tail with intermediary observedA ] B| C

« head to head with neither the intermediary nor afris
descendants observed:(] B|O

A C A A C B A C B

O-@-0O O8O O-0-0

Canonical distributions: fit a standard patterrhveih easily filled in CPT.
o deterministic node— value is specified exactly by value of parenits w
no uncertainty.
0 noisy-OR — uncertain ability of each parent to cause tlilel ¢b be true
since the causal relationships may be inhibited.
= Assumes all possible causes are listed (otherbegnouped in a
leak noddor miscellaneous causes).
= Assumes the inhibition of each parent is independEthe others.
» Hence, we need only specify O(k) parameters insté&(%) for
k causes: the probability of inhibition of eachtloé causes.
o other noisy-operators (MAX, AND, etc).




¢ Continuous Random Variables:
o discretization — dividing variable’s possible values into intdsva
0 parameterization — describing the variable’s distribution by a fengtet of
parameters.
o hybrid BN — a BN containing both discrete and continuousaides.
o conditional distributions for continuous variables:
= discrete parents’ values are enumerated.
= continuous parents’ must be summarized in a digtoh, for
instance, the linear Gaussian distribution wherarmaries
linearly with parents’ value and std dev is fixgd= ax+ b.
= linear Gaussian has joint distribution is multiate Gaussian over
all variables. These are combined with discreteabtes in
conditional Gaussians.
o conditional distributions for discrete variablegtwtontinuous parents.

Approximate Inference in Bayesian Networks
* Monte Carlo algorithms — algorithms that approxienatdesired quantity through
random sampling.
¢ Direct Sampling
¢ Rejection Sampling
¢ Likelihood Weighting
¢ Markov chain Monte Carlo (MCMC) — a sampling techue that settles into a
dynamic equilibriunsuch that the long-term fraction of time sper¢ach state is
exactly its posterior probability given certain déions.
o Markov chain — a structure that defines the probability of siianing
from the “current” state to the “next” state.
= transition probabilityq(x - x‘) - the probability that the process
transitions from state to statex’.
= ergodic— essentially every state much be reachable frarye
other and there can be no strictly periodic cycles.
= state distributionsz (x) - the probability of being in stateat the

t-th step of the Markov chain.
0 stationary distribution— a state distribution such that=rz,,

Ox' m(x")=> m(x)q(x - x)
= This distribution is unique if the chainesgodic
= Adistribution is stationary if it satisfies tlietailed balance

equation:
Ox,x" (x)g(x - x)=m(x) a(x" - x)

Probabilistic Reasoning Over Time

Modeling Uncertainty over Time
e Setting
0 X, - asetof unobserved state variables at time
0 E -asetof observable evidence variables for time
0 a:b-denotes an interval froento b.

« Stationary Process- process of change that is governed by laws thabd
change over time.
* Markov Assumption — current state depends only ofiréte history of previous
states. Processes satisfying this assumptiollarkov Processes (Chains)
o transition model — law describing how state changes over time.

P(X | Xoea) = P( X | X,) wherea O{1...t-1

o first-order Markov Process — current state is solely dependent on the
previous state

= transition model:  P(X, | X_)

* We assume the evidence variables at tiskepend only on the current state.
o sensor model- law describing how the evidence depends onttie.s

P(E | X Bus) = F(EI X)
+ prior probability for the initial state:P( X, )
¢ complete joint

P(Xor. £) = PO AOX1 %) # 61 Y

Filter (monitoring) - the task of computing theelief state- the posterior distribution
of the current state given all evidend®{ X, | g;).

¢ Recursive estimation — forward chaining.

P(Xt|Q1)D P(?l X)Z F( X| X—l) (’ %l 1@1)
Xt recursive estimate
f, OFORWARD f_,, 8
* When the state variables are discrete, this upgaenstant in space and time.
+ Likelihood P(g;) can be calculated by a likelihood messdges P (X,,&,):




Prediction - task of computing the posterior distribution oséuture state, given all
evidence;P(X;., | &;) wherek > 0.
¢ This is equivalent to filtering without new evidencHence, we can easily derive
the following update:

P(Xrler)= 2 A Xl Xew) R %l £

recursive estimate
« stationary distribution — The fixed point of the Markov process that is
approached upon successive applications of theiti@m model.
0 mixing time — the amount of time required to reach statioparit
o Prediction is doomed to failure for future timesrmthan a small fraction
of the mixing time.

Smoothing (hindsight) - task of computing posterior distribution fopaststate,
given all evidenceP(X, | g;) where0<k <T.

« Accounting for hindsight is done with an additiobakckwards message:

P(Xler)D A X&) R gurl %)

T B

By =Z P(et'(ﬂl Xk+1) F( Kol )&) Rt

xkol
« The time and space needed for each backward measagenstant.
e Thus, the process of smoothing with respea tois O(t).
+ Thus, to smooth the whole sequence naively, reg|Gi¢g).
« using dynamic programming the cost is 00Ift) by recording results of forward
filtering over the entire sequence while running bfackward algorithm fror to
1 and use the smoothed message at each tim®stepvard-backward algo.
o space is nowD(| |t)

Most Likely Explanation - task of finding the sequence of states moshlike
have generated a sequence of observatanganax, P(xn |e,_1).

« most likely sequence must consider joint probaedibver all time steps.

« there is a recursive relationship between mostyikaths to each state.X and
the most likely paths to each state X

* Recursive formulation:

0 messages: m, =max P(X, &)

0 summation ovek; replaced by a maximization.
« Pointers are used to retrieve the most-likely exgtian
« Viterbi algorithm has a space and time requireno@(t).

Hidden Markov Models (HMM) - a temporal probabilistic model in which the stat
of the process is described bgiagle discreteandom variable and transitions obey the
Markov assumption.
+ transiton model: T, =P(X = j| X =)
+ observation model: (O, )i,i =P(gl X =1
o forward message - f,,, 00, T,

0 backwardmessage - b,,,, O0TO, b,

Kalman Filters — a temporal probabilistic model for continuowetspaces under the
Markov assumption and using linear Gaussian digiobs to model the states.
« amultivariate Gaussiaulistribution can be specified completely by itsam@
and its covariance matriX .
« In general, filtering with continuous or hybrid spea generate state distributions
whose representations grow without bound, but thesSian distribution is “well-
behaved” since it has the following properties:

1. If the current distributiorP (X, |e,,) is Gaussian and the transition model
P(X..x,) is linear Gaussian, then the predicted distrilutio
P(Xulew) = [ P(Xuilx) P(x, ley) o
2. If the predicted distribution is Gaussian and theesvation (sensor)
model is linear Gaussian, then conditioning on eeidence yields:
P(Xealey.r) O P(eys] X o) P(X.1ley)
* General formulation:
P (X 1%) = N(FX( E, ) (Xe)
* FandZX, describe the linear transition model & noise.
P(zI%)=N(Hx.X,)(z,)
* HandX, describe the linear sensor model & noise.

« Extended Kalman Filter (EKF) — allows for limited nonlinearity in the model
by modeling the systeically as linear inx, in the region ofx, = p, .

* Switching Kalman Filter — multiple Kalman Filters run in parallel eachngsa
different model of the system. The resulting pcgdn is a weighted sum
depending on how well each filter fits the currdata.




Dynamic Bayesian Networks (DBN) — a Bayesian network that represents a
temporal probability model by having state variat{ereplicated over time slices with
the same conditional independences. We also haderee at each time slig.
¢ Constructing DBNs
0 We need 3 broad types of information:

1. a prior distributioron the initial variables: P(X,)
2. atransition model P(X..1X,)
3. asensor model P(E X))

o In addition, we must specify a local and temposablogy of the nodes.
0 Issues we need to deal with:
= Noise we assume that our measurements are noisy, widch
model with aGaussian error model
= Failure: in the real-world, sensors fall...

« transient failure mode}l- allocates a probability that the
sensor will return some nonsense value.

« persistent failure mode} describes how a sensor behaves
under normal and failure conditions. There is albm
probability of failure, but it models the fact thsnsors
tend to remain broken.

« Exact Inference- given a sequence nfobservations, we simply construct the
necessary DBN af time slices — a process knownwesolling .

o An efficient process usemriable eliminationbefore proceeding to the
next time slice — this is equivalent to starting(atvith a new initial
distribution determined by our variable elimination

o We cannot efficiently and exactly reason abouttraplex temporal
processes represented by general DBNs.

* Approximate Inference
o Overcoming these blocks relies on 2 observations.
= We use the samples as approximate representatfahe ourrent
state distribution
= Generating the samples with naive likelihood werghtvill have
~0 probability of matching the evidence.

« We want to focus the set of samples on the highaitity
regions of the sate space.

o particle filtering — leverages the above observations to make ariesffi
sampling algorithm that isonsistent We begin wittN samples from the
prior distribution at time OP(X,). Then we use an update cycle

= Each sample is propagated to next time slice bypBagthe next
state value.1 givenx, using the transition mod@(X,,, | X,).

= Each sample is weighted by the likelihood it assignthe new
evidence:P(e,, | X,,) from the sensor model.

= A new population oN samples isesampledeach new sample is
selected proportional to its likelihood weight.

Making Simple Decisions
decision-theoretic agent- an agent capable of making decisions in thedace
uncertainty and conflicting goals. Unlike a goakbd agent (only views each state as
‘good’ or ‘bad’) a decision-theoretic agent makeatinuous measure of state quality.

Combining Belief and Desire under Uncertainty

« utility function — a function that assigns a single number to etatle expressing
its desirability. These are combined with the tmlity of each action’s actual
outcome to give expected utility of the action.

0 expected utility:

EU[A] E]:iz P(Result( A D] A .5 Y Resylf A)

= Ais the actionE is the evidence
o principle of maximum expected utility (MEU) — a rational agent should
choose the action that maximizes it's expectedtyutil

Utility Theory

1. A-B Alis preferred td.
2. A-B agent is indifferent betweekandB.
3. A>-B agent prefera to B or is indifferent.

« Lottery — a set of outcomes; with a probabilityp;: L =[p1,Cl; PG Ry Q]
¢ Axioms of Utility Theory
1. Orderability — for any two states, an agent must prefer otleet@ther or
else be indifferent between them.
(A-B)O(A< BO( A- B
2. Transitivity —A preferred to B, & B preferred to C, then A gneéd to C.
(A-B)O(B-C)=(A- Q
3. Continuity — If B is between A and C in preference, theretsxi
probabilityp for which the agent is indifferent between gettihépr sure
and a lottery that yields A with probabilipyand C with probabilityl-p.
A-B-C = Op [pAl-pg- ¢
4. Substitutability — an agent indifferent to A and B is indifferentz more
complex lotteries, 1 with each A and B.
A~-B = [pAl-pd=[nBl- p¢
5. Monotonicity — If 2 lotteries have the same outcomes, A ananl,agent
prefers A to B, then it also prefers the lotteryhahigher probability of A.
A-B = p2q=[pAl-pB-[qA- pB
6. Decomposability— Compound lotteries can be decomposed:

[p.A1-p[aBl-a4]-[ pAr paBE N+ p. ¢




Utility
1. Utility Principle
U(A)>u(B) = A-B
U(A)=uU(B) - A-B
2. Maximum Expected Utility Principle

U(lp.siimoSI)=2 pU S

Multiattribute Utility Functions

multiattribute utility theory — utility theory for outcomes involving two or
more attributesX = X,..., X, .

strict dominance — option 1 has higher value on all attributes thaother option
2. Clearly the T option is chosen.

stochastic dominance- if two actions?; andA; lead to probability distributions
p1(x) andpz(x) on attributeX, thenA; stochastically dominate% on X if,

X X
ox [ m(ydy<[ p(ya

o If A; stochastically dominates,Ahen for any monotonically
nondecreasing utility function U(x), the expectétityi of A; is at least as
high as the expected utility of.A

0 qualitative probabilistic networks — algorithms for making rational
decisions based on stochastic dominance alone.

representation theorems- theorems that identify regularities in prefeeenc

behavior; U (%,...,%,)= f[ (%) fn(>g1)]

preference independence- attributes; andX; are preferentially independent
of Xs if the preference between outcoras x,, %) and(x ', ", %) doesn't
depend on the value.

mutual preferential independence (MPI)- no attributes affect the way in
which one trades off to the other attributes agaéash other
o If attributes X,,..., X, are mutually preferentially independent, then the
agent’s preference behavior can be described asnizing the function

V(&--w)=ZV( x)

where eaclV is a value function referring only to the attrié.
o additive value function— a multiattribute value function that is the sum
of value functions for individual attributes.
utility-independence— an extension of preference independence toilesteA
set of attributeX is utility-independent of a set of attributésf preferences
between lotteries on the attributesXirare independent of the particular values of
the attributes iry.
mutually utility-independent (MUI) — each subset of a set of attributes is
utility-independent of the remaining attributes.
o multiplicative utility function — a function that can express the behavior
of any agent exhibiting MUI in onlg single-attribute utilities and
constants fon attributes.

Decision Networks

decision network— a Bayesian network with additional node typesafiiions
and utilities. Contains information about the atgecurrent state, its possible
actions, the state resulting from the agent’s acémd the utility of the state.

o Structure
= Chance nodes (ovals)represent random variables each with a
conditional distribution indexed by parent statearents can be
other chance nodes or decision nodes.
= Decision nodes (rectanglesyepresent points where agent has a
choice to make.
= Utility nodes (diamondsy represent the agent’s utility function.
Its parents are all variables directly affectingjtyt
o action-utility tables — A simplified form in which the action is connedt
directly to the utility thus making the utility nedepresent the expected
utility... a compiled version.

algorithm to evaluate decision nets

1. Set the evidence variables of the current state

2. For each possible value of the decision node
a. set the decision node to that action
b. calculate the posterior probabilities for the p&seaf the utility
c. calculate the resulting utility

3. Choose the action with highest resulting utility.




The Value of Information

« information value theory — theory describing what information is best tquae
in order to make a decisionone of the most important parts of decision making
is know what questions to ask.

o Tests/Questions can be expensive/hazardous binftimmation they yield
may overweigh those risks.
0 sensing actions actions preformed in order to acquire informatio
o value of information — the value of a piece of information is the
difference between the expected utility betweerbist possible actions
before and after information is acquired.
= [Information has value to the extent that it isljki® cause a
change of plan and to the extent that the new pidirbe
significantly better than the old one.

« value of perfect information (VPI) — value of information assuming exact

evidenceE; of some random variable is obtained:

vel,(E)=( (5= 5) e, | & 5= §)|- el b
o Properties
= VPIlis non-negativet]j,E VPI. ( EJ)Z 0
= VPl is not additive (in general):
VPI.(E,,E)# VPL(E)+ VPL( )
= VPlis order-independent:

VPIe(E;. )= VPL(E)+ VPL: ( B)= VPL [ B)+ VP §)

« Information-Gathering Agent
0 agent ismyopic since the VPI formulation only accounts for thieef of
evidenceg; given that only thak; is observed without including the
possibility that future evidence may make the olest@sn of E; more
valueable.
o To consider all possible sequences of informatémuests would require
conditional planning

Making Complex Decisions

Sequential Decision Problems — an agent’s utility depends upon a sequence of
decisions.
¢ transition model T(s,a,s’)— the probability of transitioning from stag¢o s’ due
to actiona.
0 Markovian — the probability of reaching from s depends only on stase
and not on the entire history of earlier states.
« environment history — the sequence of states on which utility depends.
0 In states, the agent receivesraward of R(s)
o0 environment history is simply a sum of rewards ez
« Markov Decision Process- a fully observable environment with a Markovian
transition model and additive rewards.
o Components
1. Initial stateS
2. Transition modeT'(s,a,s’)
3. Reward functiorR(s)
* policy 77- a plan of what action to take in a given states n(s,)

o The quality of the policy is measured as the exgakatility of all possible
environment histories generated by a policy.
o optimal policy 77 - a policy that yields the highest expected wtilit
« Optimality for a sequential decision process
0 Is the task episodic or continual?
= finite horizon — the decision process goes on for a fixed tine
« With afinite horizon, the optimal action in a givstate
could change over tim& optimal policy is
nonstationary.
= infinite horizon — the process continues indefinitely.
« optimal policy isstationary.
0 How to calculate the utility of state sequences?
= multiattribute utility theory — each stats is viewed as an
attribute of the state sequerjeg, §,...].
= stationary preference assumption- if two state sequences,
[%.5 S.-] and[s" 5" s"...], begin with the same state,
s = $ ', then the preference order of the two sequenaaddbe

the as sequencgs, s.....] and[s,s,"...] are ordered.




= Under stationarity, there are only two possiblétigs:
* Additive Rewards

U([s s s)=2, K9

¢ Discounted Rewards

Ul s - 1) =X/ R 9
0 yis discount factor between 0 and 1 indicative of
preference between current and future rewards
= y=0: future rewards are insignificant
= y=1:equivalent to additive rewards
= equivalent to an interest rate i/ y) - 1.

= How to calculate utility when history is infinite.
1. For discounted rewards with a maximum rew&gd, and

y <1, utility is still finite:

U s s ]) =Xl R 9 Rl(1-y)

2. Proper policy — the agent is guaranteed to get to a terminal
state eventually, so infinite sequences can beréggho
3. Compare infinite sequences in terms of averagernkper
time step.
0 How to choose between policies?
= In general, a policyrgenerates a whole range of possible state
sequences, each with a certain probability detezchby the
transition model.
= Value of policy is the expected sum of discountadards.
= optimal policy:

7 =argf1a><E[zzthR( s) "T}

Value Iteration — an algorithm to calculate the optimal policydajculating the utility
of each state and using state utilities to selecimal action in each state.
¢ Utility of a states by following policy 7z

V(e =Sy A SIm 5= §

«  True Utility of states: U(s)=u"(s
¢ FromMaximum Expected Utility (MEWrinciple, we have an optimal policy:
7 =argmaxd T(s.a,s) Y s

Bellman Equation
U(s)=R(9+ymaxx T(sad U 3

0 The utility of a state is the immediate rewardtfaat state plus the
expected discounted utility of the next state, masg that the agent
chooses the optimal action.

o |If there aren possible states, there will beBellman equations in
unknowns. Unfortunately they are nonlinear.

Iterative Approach — calculates the utility of each state on thesasthe utility
of their neighbors> propagates information through the state spackouéa
updates.

o Bellman Update U, (s)=R( S)+Vm§X§ Msad U 3

o Converges to a unique solution whose corresporlifigy is optimal.
= contraction — a unary function that, when applied to two dife
values in turn, causes their corresponding outplutes to be
“closer together”, by at least some constant amdbanh the
original argument were.
* has a single fixed point
¢ When applied to any argument, the output must &seclto
the fixed point than the original argument was.
= The Bellman update can be viewed as an opeBasqplied to the
set of utilities:U,,, = BU,

* maxnorm: U] =maxU (s)

« the distance between 2 vectors is the maximumrdista
between any two corresponding elements.
= The Bellman update is a contraction by a fagton the space of
utility vectors. That is, le; andU; be two utility vectors, then

[Bu.-BU s yu -y
= if U, -U|| is theerror in estimateJ;.
« value iteration converges exponentially in the nandf
iterations. Unfortunately, this is degraded joy 1
* If Rnaxis the bound on the rewards, then the number of
iterations required to reach an error of at n&ist
N = log(2R,.) - log(£(1-))
~log(y)
= |f the update is small, then the correspondingrésramall
Wa-Ul<e@-niy = [Ua-l<e




Policy Iteration - an alternative way to find optimal policies Btemating between 2
steps: policy evaluation and policy iteration.
+ Policy Evaluation — given a policyr, calculateU, =U " .
0 since policy is chosen, Bellman equations beconeati

U(s)=R9+VE T sn( 3 § 03
o Thus, givem states, this can be solved using linear algeb@xir).
« Policy Iteration — calculate a new MEU policar.; based on maximizing, .

« Modified Policy Iteration
o Use simplified Bellman updates repeakeémes for the evaluation step:

LR EE RN

o Often more efficient than either value iteratiorpoficy iteration
« Asynchronous Policy Iteration— pick any subset of states and apply either
policy evaluation or policy iteration to that subse
o Under certain conditions on the initial policy amdity function, will still
converge to optimal policy
o0 Allows freedom to choose what states to work on.

Partially Observable MDPs (POMDP) - an MDP agent operating in a partially
observable environment where the optimal actimtdtes also depends on how much the

agent knows in state Defined in terms of &ransition modelTl (s a s‘) , areward
function R(s), and arobservation modeD(s, 0 that specifies the probability of
perceiving observatioa in states.
« belief-stateb — the set of actual states the agent might beefiresented by a
probability distribution over all states.

o If b(s)was the previous belief state when the agent egs@gtiora and
observes observatian the new belief state is

b'(s)00(s, 4> T sa$ b)
« The optimal action depends only on the agent’'santrbelief state> a mapping
77 (b) from belief states to actions.
* Solving a POMDP on a physical state space can deaed to solving an MDP

on the corresponding belief state space with ttémsimodelr and rewardso.
o The probability of an observatiangiven actiora in belief statéb is,

Plolah=3> (s, 9>. [sa} b)

<
o0 Theprobability of transitioningrom belief statd to belief statd’ via
actionaiis,

r(bab)= X Avlaa)y & spY T sak
o Thereward functiorfor belief statesis, ~ p(b)=>_b(s) R $

o Finding even approximately optimal POMDPs is difftc- PSPACE-hard

Learning from Observations

Forms of Learning

« Recall, in designing a learning agent, there_isrdopmance elemerftiecides on
actions) and a learning eleméntodifies performance element to make better
decisions).

¢ Issues in design:

1. Which components are to be learned
2. What type of feedback is available for learning
(a) supervised learning— learning a function using examples of
inputs and corresponding outputs.
(b) unsupervised learning— learning patterns in input without any
corresponding output values.
(c) reinforcement learning — learning by means of reinforcement
(positive/negative rewards).
3. What representation is used for learned components
4. How to incorporate available prior knowledge

Inductive Learning

« pure inductive inference (induction)— given a collection of examples fof
return ahypothesish that approximates

0 generalization— a good hypothesis will predict unseen examples
correctly.

o hypothesis space H- the set of hypotheses to consider.

o consistent hypothesis- a hypothesis that agrees with all observed data.

0 realizable— a learning problem in which the true functiomdstained
within the hypothesis space.

= prior knowledge can be used to define the hyposhesace to
make the problem realizable.

« Complexity (of hypothesis) veEExpressivenesgof hypothesis space
0 How to choose between multiple consistent hypofese

= Ockham’s razor — prefer the simplest hypothesis consistent with
data.

= For nondeterministic functions, there is a traddmfween
complexity of the hypothesis and the degree tf flie data.

0 An expressive hypothesis space makes it possiliied@ simple
hypothesis to fit the data. Restricting the exgireness forces consistent
theories to be complex.

o There is a tradeoff between the expressivenessiyb@thesis space and
the complexity of finding simple, consistent hypséis within it.




Learning Decision Trees

decision tree— a tree of rules for classifying a set of atttésu(inputs) describing the
object, in which the tree represents the seri¢esté used to make a classification.
Decision tree has nice property that its learneattion is human-readable.
« types of learning
o classification— learning a discrete valued function
0 regression— learning a continuously valued function
« expressiveness of a decision tree
o some functions require tree exponentially larg# of inputs.
= Parity function — returns 1 iff an even numberrgfuts are 1.
= Majority function — returns 1 iff more than half imjputs are 1.
o Problem is fundamental
= For n-attributes, the truth table contaifis@vs. Hence, some
functions will always require at least that mantg bbb represent.

= Moreover, for 2 bits, there ar@? possible functions!
« smallest possible decision tree
o We want to find smallest possible consistent denisiee (intractable).
Instead, we use greedy heuristic always selectirast important
attribute’ as next in tree.
« decision tree learning algorithm
o Given a current leaf in the tree:
= |f there both positive and negative examples, chtivséest’
attribute to split them
< If no attributes remain, noise is present. A senply to
decide is take a majority vote of remaining examples
= |f there are only 1 type of example remaining, dediased on this
remaining label.
= |f there are no examples remaining, no observaifdhis scenario
has been observedl use majority vote of parent node.

choosing best attributesan attribute is chosen at each leaf of the trekvide
up all training examples relevant to that leaf theenching the tree downward.
The attribute is chosen according to which maximiaégmation gain.
0 expected amount of informatiera concept from information theory in
which information content of an attribute is mea&slinbits.

(P () P(w)) =2~ P(¥) log, H( 1)

i=1

o number of bits requiretb classify after testing attribute A:

Remainde(A) =Y PN I[ R0 ]
= P*Nn LR+ p+n
where there arp positive examples antdnegative examples in the
remaining training set and thh value of attribute A hag positive and
ni negative examples at that level of the tree.
o information gain

Gain( A) = Gair( A,)-Remainde( 4  Gain(A)= I( pE o p: nj

wheret is the depth of the current branch.
assessing performance of learning
o Algorithm
= Collect set of examples
= Divide set into disjoint set$raining andtestrandomly
= Apply learning tdatraining set — hypothesis
= Measure percentage of examplesest correctly classified bi.
= Continue process
o learning curve — the performance of the algorithm plotted agaimst
number of examples used to train it. If there texdspattern in the data
being learned, the curve should approach 1 asuimber of examples
grows.
o peeking- often test data is used to tune the algorithrd,ransing this
tainted test set is invalid since hypothesis wiecsed on basis of test-set
performance!




Statistical Learning Methods

Statistical Learning

« evidence- data; instantiations of random variables deswyithe domain.

« hypothesis— a probabilistic theory of how the domain works.

« Bayesian Learning— makes predictions on the basis of calculatieg th
probability of each hypothesis given the data.dRt®n uses all the hypotheses
weighted by their probabilities.

o Probability of a hypothesis given data
P(h|d)DP(dIh) A(h)

o Probability of a data X given previous datéhypotheses marginalized)
P(X|d)=3 P(X|h) A hld)

= hypothesis priar  P(h)
= data likelihood P(dlh)
0 Observations assumed independently and identidatyibuted (1ID):

P(d|n)=|jP(q|h)

0 The true hypothesis eventually dominates the Bapgsiediction!
However, it is often difficult to achieve optimalit
¢ Maximum a Posteriori (MAP) hypothesis an approximation of Bayesian
optimality through the most probable hypothesis;

Pyap =arg maxP(h ﬂ)
]

P(X1d)= P(X| )

o overfitting — a consequence of an over-expressive hypothesie s
Hence, Bayesian and MAP learning use the prioetmfize complexity;
more complex hypotheses have lower priors.

o For deterministic hypotheseB,(d|h) is 1 ifh is consistent with the data
and 0 otherwiseHence, ap is the simplest logical theory that is
consistent with the data... an embodiment of Ockheamts.

0 huapis equivalent to minimizing-log, P(d [h) - log, P(h). From

information theory,~log, P(d | h) is the number of bits required to

encode the data given the hypothesis ataly, P(h) is the number of

bits required for the hypothes® minimize data compression!
¢ Minimum Description Length (MDL) — attempts to minimize the size of
hypothesis and data encodings directly rather wank with probabilities.
* Maximum-Liklihood (ML) hypothesis — a simplification of MAP learning in
which a uniform prior is given over all hypotheskg:.

Learning with Complete Data

« parameteric learning — finding numeric parameters for a probability rabdith
fixed structure.
« complete data— each data point contains values for every vaziabthe model.
* ML discrete parameteric learning— object is to find the parametefshat
maximize thdikelihood or often, thdog likelihoodby the following method;
1. Write down an expression for the likelihood of thea as a function
of the parameters
2. Write down the derivative of the log likelihood wi.reach parameter.
3. Find the parameter values that make the derivétive
* When the data set is small, some events will neg baen observed so thgsb
gives them a probability of O.
o In practice, often these events are given a couhtso they aren’t
excluded from the hypothesis.
« With complete data, the ML-parametric learning gesb for a Bayesian network
decomposes into separate learning problems; ong@aemeter.
* Naive Bayes Models- model in which ‘class’ variablé is the root of ‘attribute’
variablesX;. Thus, the probability of each class is given as,

P(CIX,...,%)0 P(C)Ii_l Kxl g

o Naive Bayes scales well: farBoolean attributes, there é2a+1
parameters.

o No search fohyap is required.

o No difficulty with noisy data and can give probatdtic predictions.




Reinforcement Learning

Reinforcement Learning (RL) - the task of using observeglvardsto learn a
(approximately) optimal policy for an environmentdhoosing an action that will
maximize theexpected rewardiven the current observed state of the agent.
« Reward (Reinforcement)— feedback that differentiates betwegmdandbad
outcomes; thus allowing the agent to make choices.
* RL builds on the studies of animal psychologistdifferentiating between
reward and other sensory inputs.
¢ Unlike MDPs, RL agents assume no prior knowledgeitbier the environment or
the reward function.
« In asense, the RL task encompasses all:airAhgent is placed in an
environment where it must behave successfully.
« Three types of agent designs:
o utility-based agent- learn a utility function for states, which thgeat
will use to select actions in order to maximizeentpd utility.
= requires an environment model to map actions toessor states.
o Q-learning agent- learns a utility function on the state-actioirgaa so-
called Q-function.
= able to compare actions without knowing their oates.
= without knowing action outcome, look ahead is rmggible.
o reflex agent- learns a policy that maps states to actions.

Passive Reinforcement Learning - the agent’s has a fixed policy perform
action n(s) in states. This is similar tgolicy iteration but we lack théransition model

T(s a s) and theeward functionR(s). Thus, the agent performs a setrizfls and

uses the observed rewards to estimate the expatdigdof each state) ”(s) . Starting
in states we want to estimate the (discounted) expectedneéfvam future states:

un(g:e@y R(s)|7. 5= %

« Direct Utility Estimation — the utility of a state is the expected rewaadtstg
from that state, so eattial is a sample for each state visited.
o In this setting, the problem becomes a supervisaahing problem of
mapping state to valu® an inductive learning problem.
o ThisMonte-Carloapproach assumes independence of the utility ifumct
between states. This ignores the fact that eisliire coupled in the
Bellman equations! Thus, this approach doednotstrap!
= Without bootstrapping, invaluable information feafning is lost
and thus the technique converges very slowly.

« Adaptive Dynamic Programming (ADP)— as the agent moves through the
environment, the transition model is estimated thedVIDP for the corresponding
model estimate is solved incrementally using dyiegsrogramming.

0 Learning the environment:
= The transition modeT(s a s) is estimated from the frequency

from states to states’ via actiona.
o The MDP is solved using policy iteratiem modified policy iteration
o ADP is intractable for large state spaces.
0 approximate ADP — bounds the number of adjustm@ertsransition.
= prioritizing sweep heuristie prefers to adjust states whose
successors have recently had a large utility aatjeist.

« Temporal Difference (TD) Learning— a mixture of sampling and constraint
bootstrapping in which the values of the obsentates are modified to reflect
the constraints between states given by the MDP.

o TD equation: given a learning ratewve update the expected utilities:
UT(s) - U(9+a R 3y U(§- U}
The TD equations converges to the MDP equilibrianethough only
visited states are considered — the frequencysitbvio a state are a
substitute for the explicit transition model.
o TD s an efficient approximation of ADP:
= the utility function is updated by local adjustment
= TD only adjusts w.r.t. the observed transition anty makes a
single update per transition.

Active Reinforcement Learning - policy is no longer fixed; active agents must
decide on actions to take.
« Exploration
o greedy agent follows the current “optimal policy” according the
current estimates of the utility of each state.
= unlikely to converge to the “optimal policy” sinoeglected states
have poor estimates of their utility functions.
o Trade-off between exploration and exploitation
= exploitation— utilizing current knowledge to perform actiohatt
maximize rewards.
= exploration— trying suboptimal actions with the hope of
improving our current estimates for the utility @tion.
= n-armed bandit a slot machine with-levers — gambler must
choose to exploit the lever with highest payofeaplore other
levers to better estimate their payoff.
« Gittins index— a measure of this tradeoff in independent
situations (doesn’t extend to sequential decisions)




o Greedy in the limit of infinite exploration (GLIE ) — exploration
schemes that are eventually optimal.
= simple GLIE scheme — try a random action with plolits 1/t;
otherwise, perform the optimal action.
= optimistic utility estimateshat favor unexplored states:

U (8= R(§rymax (X (529 0 4. ¢ ol

e U" is the optimistic utility function
+ N(a 9 is the # of times actioais done in state.

« exploration functionf (u, n) - trade-off between greed and
curiosity that must increase inand decrease im e.g.

f(u,n):{R n<N
u otherwise
* policy converges quickly while utility estimatesnee@rge
slowly, but all we need is correct policy!
Action-Value Function
o TD-learningcan be adapted to the active setting simply bysing an
action based on the currdutestimate via 1-step look-ahead. However,
we still have to learn the environment model t@sehctions.
0 Q-learning — learns an action-value representation insteaildfes.
= Q-values: U(s)= m;’:le( a,9

= model-free- does not require an environment model for |@arni
or action selection.
= Bellman equations for Q-values

Q(a9=R$+vx T sapmax @ 5 )
= TD Q-learning (model-free)
Qa9 - Qajral & prymax ¢ a ) @ a)
« TD doesn’t enforce consistency between values mgus
the model so it learns slower!
o knowledge-based approach- method of representing the agent function
by building a model of some aspects of the agemtisronment.
= Has definite advantages over model-free learnirgesgas the
environment becomes more complex.

Generalization in Reinforcement Learning  — we now consider methods for
scaling RL to worlds with enormous state spaceéandard tabular RL is impractical
since the table has one entry per state and sinséstates would be visited rarely.
« function approximation - representing the value function in (approximaie)-
tabular forms, e.g., a linear combinatiorfedturesof the state:

0a(5)=6,1,(9+.+8, 1(3
o Thus we want to learn the parametés.., 6, to best approximate the

value function.Note features can be non-linear in the state variables

o Function approximation allows the agent to broagéneralize between
many states via states’ common attributes.

o Unfortunately, the best utility function may be @op estimate!

o Online learning updates\(idrow-Hoff or Delta Rule): uses derivatives
of squared error to update parameters.

4 - a+afs (9-0,(3) L
= TDupdate: 6§ - Q+“(R(S)+y09(s)— U $)6Lf;;5)
= Q 9.H6f+a(R()+ymaxQ(a s)- a)%aQe a9

0 These updates converge to the optimal estimatenfmar functlons, but
can wildly diverge for non-linear ones.
« Function approximation can also be used to estithatenvironment model:
o0 in observable modelshis is a supervised task.
o in partially-observablemodels, DBNs with latent variables can be used.




Robotics

Robots - physical agents that perform tasks manipulatiegohysical world using
effectorsbased on observations from the@nsors Robots must deal with environments
that are partially observable, stochastic, dynaamd, continuous.
¢ Sensors- instruments for perceiving the environment.
0 passive— capture signals generated from other sourcé®ienvironment.
0 active— send energy into the environment and observeeponse; e.g.
sonar. This technique runs the risk of interfeeefiom other sensors.
o range finders— measure distance to nearby objects.
0 imaging sensors- cameras that provide images of the environment.
Vision techniques can then build models of the mmrent.
0 proprioceptive sensors- inform the robot about its internal state.
= e.g. shaft decoders fodometry force and torque sensors.
« Effectors— means by which robots move and change body sitap@erwise
manipulate their environment.
o kinematic state (pose)- 3 location coordinates (x,y,z) + 3 angular
coordinatesyaw, roll, pitch.
o dynamic state— 1 additional dimension for the change in eachedision
of the kinematic state.
o degrees of freedom (DOF3}- the number of independent directions in
which an effector (robot) can move. Hand has 6 elegof freedom.
= controllable DOF — the DOF that the robot can directly change.
= effective DOF- the DOF that the robot indirectly has (over fime
= holonomic - the controllable DOF is the same as effectivd-DO
= nonholonomic— the effective DOF is greater than controllable.

Perception

« Kalman filters, HMMs, DBNs can be used for represgntransition and sensor
models in a partially observable environment thiohglief states.
o filtering — task of updating the belief state. In a cordirsienvironment,
the recursive update equations are modified byaoépd summations with
integrations.

o transition (motion) model P( X,,, | X, &)
o sensor (observation) modeP(z,, | X.,)

Localization - problem of determining where objects are inrtimt's world.
o tracking problem — initial pose of object is known and we wishrack
its changing pose over time.
o global localization— initial pose of object is unknown and we wish to
figure out where the robot is.
o kidnapping problem —the object to be localized is “kidnapped”.
« Motion Model: A crude approximation is to make eaction into a instantaneous
specification of translational velocity and rotational velocityq over a small
interval of time4t:

VAt cosg,
)ZM = f[)i,,vt,ag] = X +| v, Atsing
& it

o0 Uncertainty is added by Gaussian noise with a caneeZ,:
P(Xul %, 8)= N[ X.,.Z,)
¢ A sensor model.
o landmarks — stable recognizable features of the environment.
0 Suppose the robot is at Iocati()x{‘, y,R,H,R) and an observed landmark

has know locatior{x, y/) then theangeandbearingare:
(¢ =x) + (=)

z,=h(x", ¥.4%)= R_
( arctar'[iy‘R Y ] -g°
X =X
0 Assume there is Gaussian noise with covariagce
P(Zl‘t | Xt) = N(z: 'zz)
o Now assuming the errors for different beam directiare 11D and we
haveM beam directions to a landmark:

P(z|X,)O Elexr{—(zj —“;‘) /272}

* Monte Carlo Localization — localization via a particle filter represent ledelief
state as a single particle corresponding to passialtes.
« Kalman Filter Localization — localization where the posterior (belief)
P(X 12, a.,) is represented by a Gaussian.
0 Gaussian beliefs aosedonly under assumption that our motion madel
and measurement modelare linear.
0 Extended Kalman Filter (EKF) — a Kalman filter than linearizésndh
by a first-degree approximation from the Taylor @xgion.
« data association- problem of identifying which landmark is which.




Mapping - robot builds a map of its environment
¢ simultaneous localization and mapping (SLAM)- robot constructs map
without knowing where it is.

P(X(+1'M|%1+1’QJ)D
P2l Xeo M) [P Xt | X, 8) B X, M 2, 2)

o This is essentially the same flavor as localizatidth the caveat that the

space of poses and mappings is much larger.
« EKF approach uses Gaussian posterior with higheedsional mean.

o As the robot explores, it gradually loses certabftyhere it is; this can be
represented bgrror ellipses

0 When landmarks are observed, uncertainty in cuaedtprevious
locations is drastically reduced.

= There is still a problem with uncertainty in landinastimation
and identification.

o Since mapM'’s size and the number of landmarks is not knowadwance,

the parameter space may change adding new eletoeghts posterior.

Planning to Move

« point-to-point motion — problem of delivering the robot or its effectora
desired target location.
« compliant motion — motion constrained to being always against ataate.
« workspace representation representing the robot in terms of the locatibits
movable parts in the coordinate system of the eatevorld.
o linkage constraints— constraints on the space of attainable workspace
0 The robot's task is often formulated in workspacerdinates of the
object’s it seeks to manipulat® inverse kinematics
« configuration space- space of robot states defined by its degreégeflom and
those of its various effectors. Each configuratibthe robot is a point.
o kinematics — transforming configuration coordinates into wspéce
coordinates via a series of coordinate transfonati
0 inverse kinematics— transforming workspace coordinates into
configuration space. This is generally hard anBigoous.
o free space- space of all configurations that a robot camaiobt
0 occupied space- space of unattainable configurations.

. path planning problem — finding a path between configurations of theotob
cell decomposition- free space is decomposed into a finite number of
contiguous regions, cells, typically a regularlasgd grid.

= Problems:
« mixed cells- cells that overlap free and occupied space.
o ifincluded, path planner may l@sound
o if excluded, path planner may beomplete
« the # of cells is exponential in the dimensidnef space.
« the path’s may have sharp, unattainable changes.
o potential field — function that is higher further from boundaries.
= Trade-off: maximize clearance while minimizing p&hgth.
0 Skeletonization— reduces free space takeletorsimplifying paths.
= skeleton- a 1D representation based on a VVoronoi graptheor
path that maximizes the distance between 2 or wios&acles.

0 Probabilistic Roadmap — skeletonization by randomly sampling
configurations and keeping those that are attamnabtl connecting points
that are easy to transition between.

= Technically incomplete since a bad random sampéimmpssible.
= Scales to high dimensions and tends to produce gafies.

Planning Uncertain Moves - problem is that uncertainty arises from partial
observablity and stochasticity of robot’s actions.

« Common practice is to useost likely statehowever, in many cases, uncertainty
is too large and robot’s true position is not neaeity the ML estimate.

« For fully observable with uncertainty in state s#ions, arMDP is good.

0 navigation function — a policy of theMDP obtained by computing the
gradient of the value function.

« In partially observable situationsP&OMDP seems appropriate.

o0 Belief states represent what agent knows and whlaeisn't
= information gathering- actions used to reduce uncertainty.
o Unfortunately it is not known how to apply POMDB<sbntinuous space.
0 Hence, we attempt to minimize pose uncertainty.
= costal navigation— robot stays close to known landmarks to
decrease uncertainty and as new landmarks areveldséris able
to explore new territory.

« robust methods— assume that each aspect of the problem hasmaled@mount
of uncertainty but does not assign probabiliti€aus, the idea is to build plans
that will work irregardless of actual values.

0 In the extreme, this becomesnformant planning
o fine-motion planning — moving a robot (arm) in close proximity to an
object. Solutions are plans guaranteed to woeklisituations.
= guarded motion— a motion command along with a termination
condition that will preempt the motion if it becosieue.
= compliant motion — allow robot to slide if motion would cause
collision.




