
CS 188 – Final Review Topics
• Definitions of Artificial Intelligence have two primary bases:

1. intelligent thought processes and reasoning
2. human-like behavior

• Rationality – Property of an agent: “does the right thing” given its knowledge.
• Turing Test – artificial intelligence test proposed by Alan Turing requiring

indistinguishably of human and computer responses to questions posed.
• Total Turing Test – Addition of visual elements of response and perception.
• Approaches to Artificial Intelligence:

1. Cognitive Modeling – AI modeled on theory of human thought processes.
2. Laws of Thought – AI built on the logical laws as a basis for rational

thought processes.
� Inference is only one of several mechanisms for rationality.

3. Rational Agent – AI that acts to achieve the best expected outcome given
the observations perceived.

� A clearly defined and completely general standard for rationality.

Intelligent Agents
Agent – anything viewed as perceiving its environment through sensors and acting upon
the environment through actuators.

• general assumption: an agent can perceive their actions but necessarily their effect
• percept – an agent’s percetual inputs at a given instance.
• percept sequence – the history of all that an agent has perceived.
• In general, an agent’s choice of action at any given time can depend on the entire

percept sequence thus far observed.
• agent function - a map from the precept sequence to an action

Performance Measure
• performance measure – a subjective criterion to measure the success of an

agent’s behavior typically stipulated by the designer of the agent.
• Generally, it is better to design a performance measure according to what one

wants accomplished rather than how one thinks the agent should behave.

Rationality
• Rationality – behavior depending on 4 factors:

1. The performance measure defining “success”
2. The agent’s prior knowledge about the environment
3. The actions the agent can perform
4. The agent’s percept sequence to date

• Rationality vs. Perfection – rationality maximizes expected performance while
perfection maximizes actual performance.

• rational agent – For each possible percept sequence, a rational agent should
select an action from its set of allowable actions that is expected to maximize its
performance measure given the evidence of the percept sequence and the agent’s
prior knowledge about the environment.

o Information Gathering (Exploration) – actions taken specifically to
modify future percepts by increasing the agent’s knowledge.

o learning – the process of modifying prior knowledge based on experience.
o autonomy – the ability to compensate for partial or incorrect prior

knowledge thereby eventually becoming independent of prior knowledge.

Task Environments
task environment – the problem the agent is solving as characterized by

1) Performance Measure 2) Environment 3) Actuators 4) Sensors – PEAS.

Dimensions of task environments

1) Fully Observable vs. Partially Observable
o fully observable – sensor’s detect all relevant aspects for choosing an action

2) Deterministic vs. Stochastic
o deterministic –completely determined by current state and agent’s action
o stochastic – as though environment is random dependent on state and action.
o strategic – environment deterministic except for other agent’s actions.

3) Episodic vs. Sequential
o episodic – experience divided into atomic independent episodes.
o sequential – current decision could affect all future decisions.

4) Static vs. Dynamic
o static – environment doesn’t change until agent makes a decision.
o dynamic – environment doesn’t wait for agent.
o semi-dynamic – environment is static, but performance measure may change

during course of the decision.
5) Discrete vs. Continuous
6) Single agent vs. Multiagent

Hardest: partially observable, stochastic, sequential, dynamic, continuous, multiagent.

Agent Structure
• Agent = Architecture + Agent Program
• Architecture – the machinery that an agent executes on.
• Agent Program - a concrete implementation of an agent function.

o Simple Reflex Agents – an agent that chooses actions only based on the
current percept.

� condition-action rule –maps a state (condition) to an action.
� Rational only if the correct decision can be made solely on the

basis of the current precept… the environment is fully observable.
o Model-Based Reflex Agents – uses a model of the world to choose

actions.
� internal state – a representation of unobserved aspects of current

state dependent on percept history.
� model – knowledge about “how the world works”.

o Goal-Based Agents – an agent that chooses actions to achieve goals.
� goal – description of situations that are desirable.

o Utility-Based Agents – agent chooses actions based on a preference
(utility) for each state.

� utility function – a mapping of a (sequence of) state(s) to a real
number describing the “degree of happiness” of that state.

Learning – the process of modification of each component of an agent to make the
components agree closer with the available feedback thereby improving the agent’s
performance.

• learning element – responsible for making improvements
• performance element – responsible for selecting external actions… the agent

being modified.
• critic – provides feedback on the agent’s performance and suggests

improvements.
o performance standard – a fixed measure of agent’s performance.

� distinguishes the reward in the percept by providing direct
feedback on quality of agent’s performance.

• problem generator – suggests actions that will lead to exploration.

Problem Solving
• problem

o initial state – the initial configuration given as input to the agent.
o actions – the set of actions (currently) available to the agent.

� successor function succ(s) – returns the set of ,action state tuples

that defines the new state achieved by taking action from state s.
o goal test – determines whether a state is a goal state.

� goal (state) – a state that is desirable to the agent.
o path cost – the numeric cost of a path reflecting a performance measure.

Typically defined as the sum of costs of each step on the path.
� step cost (), ,c x a y - cost of action a going from state x to state y.

• state space – the set of all possible states an agent could be in.
• path – a sequence of states connected by a sequence of actions.
• solution – a path from the initial state to a goal state.

o optimal solution – the solution with minimal path cost.
• problem solving agent – an agent that attempts to discover a solution to a

problem so that following the actions in that solution will lead to a goal.
o formulation – building a representation of the agent’s world.

� abstraction – the process of removing details about the world.
� goal formulation – defining goals to limit the agent’s objectives.
� problem formulation – defining the set of actions and states

relevant to achieving a goal.
o search – takes a problem as input and returns a solution to the problem.
o execute – carrying out the actions recommended in the solution.

• incremental formulation – a state is modified by operators that augment the state
(add new components without altering old ones).

• complete-state formulation – every state contains all objects and are modified
by operators that alter the arrangement of those objects.

Search

Terminology
• search tree (graph) – the path the search algorithm follows in exploring the state

space via an initial state and a successor function
o search node – a state from the state space which has a successor function.

A node is comprised of the following:
1. state – the state the node represents
2. parent – the predecessor of the node.
3. action – the action applied to the parent to reach the node.
4. path-cost g(n) – the cost of the path from the initial state.
5. depth – the number of search steps along the path.

o expanding a node – generating a new set of states via the node’s successor
function. A node is not checked to be terminal until it is expanded.

o Note that several nodes in the search tree may contain the same states,
generated by different paths. Hence, the search becomes a graph in state
space.

• search strategy – the methodology for choosing the next node to expand.
• fringe – the collection of nodes generated but not yet expanded.

o this collection typically imposes an ordering on which nodes in the
collection will be expanded next based on a preference � queue.

Assessing Algorithms
• Performance Measures for our algorithms:

o completeness – Is algorithm guaranteed to find an existing solution?
o optimality – Does the algorithm find the optimal solution first?
o time complexity – How long does it take to find a solution
o space complexity – How much memory is needed to find a solution?

• Relevant quantities:
o branching factor b – maximum number of successors of a node.
o d – depth of the shallowest goal node.
o m – maximum length of any path in the state space.

• path cost – a function used to define a numeric cost to each path.

Uninformed (Blind) search – search solely on the basis of being to expand the
successors of a state and being able to distinguish a goal-state.

Criterion BFS Uniform DFS DLS Iterative Bidirect.
Complete? Yes1 Yes1,2 No No Yes1 Yes1,4

Optimal? Yes3 Yes No No Yes3 Yes3,4

Time ()1dO b + ()* /C
O b

ε   ()mO b ()lO b ()dO b ()/ 2dO b

Space ()1dO b + ()* /C
O b

ε   ()O bm ()O bl ()O bd ()/ 2dO b

1. complete if b is finite. 2. complete if step cost is at least 0ε > .
3. optimal if step costs are all identical. 4. if both directions use BFS.

• Breadth-first Search – all nodes at a given depth in the search tree are expanded

before any of the nodes at larger depths � implemented with FIFO queue
• Uniform-cost Search – expands the next unexpanded node with the lowest path

cost � implemented by a priority queue. When costs are equal, becomes BFS.
• Depth-first Search – always expands the deepest node in the current fringe of the

search tree (search backs-up when path unsuccessful) � implemented by Stack.
• Depth-limited Search – depth-first search with a predetermined depth limit l.

Becomes DFS when l = ∞ .
• Iterative Deepening Depth-first Search – iteratively repeated depth-limited

search where l is increased by 1 on each iteration from an initial value of 0. This
combines the benefits of BFS and DFS.

• Bidirectional Search – simultaneous searches from the initial state forward and
from the goal state backwards that stop when the 2 searches meet. Encouraged by
the fact that / 2 / 2d d db b b+ ≪

• Avoiding Repeated States (Graph Search)– avoiding repeated visits to states that
have already been visited can result in substantial savings in space and time.
Algorithms that forget their history are doomed to repeat it.

Searching with Partial Information
• Sensorless (Conformant) Problems – agent has no sensors.

o belief state – a set of states representing the agent’s belief of what states it
might be in. In general, environment of S states has 2S belief states.

o coercion – executing actions that cause the agent’s belief state to collapse
to a certain set of states.

� solution – coercing the belief state to a set of all goal states.
• Contingency Problems – environment is partially observable or the outcome of

an agent’s actions is uncertain.
o adversarial – uncertainty is caused by actions of other agents.
o contingency plan - trees of decisions made based on the current set of

percepts made after the last action.
o Agent can act before finding a guaranteed plan

� idea of acting and seeing what contingences actually arise.

Informed Search – use problem-specific knowledge to improve search.
• Best-First Search – general Tree (Graph) Search where node’s are selected based

on an evaluation function f(n) – cost of cheapest path to goal through node n.
• Greedy Best-First Search – Assumes f(n) = h(n); a heuristic function.

o susceptible to false starts
o not optimal; incomplete.
o Worst case time and space: O(bm).

A* Search – f(n) = g(n) + h(n) where g(n) is the cost to reach the node n and h(n) is a
heuristic function estimating the cheapest cost to a goal through n.

• A* is optimal if h(n) is an admissible {consistent for Graph-Search} heuristic.
• A* is complete.
• If h(n) is consistent, the values of f(n) along any path are nondecreasing!
• A* is optimally efficient for any given heuristic since any algorithm that doesn’t

expand a node n with () *f n C< might miss the optimal solution.

Heuristic Functions
• Heuristic Function h(n) – estimated cost of cheapest path to goal through node n.
• Admissible Heuristic – h(n) never overestimates the cost to reach a goal.
• Consistent (Monotonic) Heuristic – h(n) is not more than the cost through n to

n’ plus h(n’). Thus, a general triangle inequality:

() () (), , ' 'h n c n a n h n≤ +

• Dominance – a heuristic h1 is said to dominate another heuristic h2 if, for any
node n, () ()1 2h n h n≥ .

• Relaxed Problem – a problem with fewer restrictions on the actions allowable in
the problem domain. The cost of an optimal solution to a relaxed problem is an
admissible heuristic for the original problem!

• MultiHeuristic: if we have a set of heuristics { }ih we can combine them into a

single heuristic: () (){ }maxi ih n h n=ɶ if { }ih is admissible, hɶ is admissible.

Local Search
� Local Search Algorithms – When the path to reach goal is irrelevant, local

search are methods for only maintaining current state and (generally) only
moving to its neighbors. Often used in optimizations where the goal is to
minimize a objective function.

o state space landscape – the space of possible states defined by a
“ location” corresponding to state and a “elevation” corresponding to an
evaluation, cost, or objective function.

o complete local search – always finds a goal (if any exist)
o optimal local search – always finds the global min/max.
o greedy local search – moves to “good” neighbor without considering

future.

• Hill-Climbing Search – Always moves in “uphill” direction to maximize
objective only searching amongst immediate neighbors of current state and
terminating when no improvements can be made � greedy.

o Problems: 1) Local Max/Min 2) Ridges 3) Plateaux
o sideways moves – moves along “flat” objective to get off plateau.

• Simulated Annealing – Hill-Climbing with random walk.

o Candidate move β is randomly selected. If candidate is uphill, it is always
accepted. Otherwise, it is accepted with a probability exponentially
decreasing with “badness” E∆ and decreasing as temperature T is
lowered � Boltzmann Distrubution.

() (){ }()1 min 1,exp /tP n E Tβ β+ = = ∆

o If the schedule for T cools “slowly enough”, simulated annealing finds
global optimum with probability approaching 1.

• Local Beam Search – maintains the k “best” successor states; an approach more

powerful than k independent searches since information effectively passes
between the “search threads.”

• Genetic Algorithms – A variant of stochastic beam search in which successors

are generated through combinations of 2 current states.
o population – the k states maintained by the algorithm
o individual – an instance in the state space.
o fitness function – an evaluation function that returns higher values for

better states.
o Essence of Algorithm

� Parents are randomly selected with probabilities based on fitness.
� Crossover points are selected randomly in accordance with the

rules of the state.
� Random Mutation occurs in each successor with ε probability.

• Continuous Spaces
o Gradient Descent (Ascent) – moves the current solution in the direction

of the gradient in the state-space landscape.

Gradient -
1 2

, , ,
n

f f f
f

x x x

 ∂ ∂ ∂∇ =  ∂ ∂ ∂ 
…

Update - ()fα← + ∇x x x

adversarial search (games) – competitive multiagent environments (agent’s have
conflicting goals). In particular, adversarial search is mixture of search and game theory.
The typical game is a deterministic, turn-taking, two-player zero-sum game of perfect
information . These games are a sequence of decisions that reach a terminal state.

• game tree – a representation that represents all legal sequences of decisions.
o root – the initial state of the game (with a starting player).
o (internal) nodes – represents decision made by one of the players. The

node is labeled by the player making the decision (Max/Min).
o edges – legal choices for a given decision in the tree. These are specified

by a successor function that lists legal (move, state) pairs.
o terminal node – an ending of the game giving a utility to each player.

� utility function – maps a terminal state to a value.
• optimal strategy – a contingent strategy that leads to an outcome at least as good

as any other strategy by assuming the opponent is infallible.
o minimax algorithm – finds an optimal strategy by depth-first exhaustive

search which annotates each node of the tree with a minimax-value:

()
()

()
()

()
()

utility

minimax- value max minimax- value

min minimax- value

s child n

s child n

n n Terminal

n s n MAX

s n MIN

∈

∈

 ∈= ∈
∈

• alpha-beta pruning – a modified minimax search that prunes branches that
cannot influence the final result.

o α – the maximum value so far at any choice point along the path for MAX
o β - the minimum value so far at any choice point along the path for MIN

Stopping search prematurely – time limits prevent full exploration of the game tree.
• evaluation function – a heuristic for accessing the utility of a nonterminal game

state; that is, it returns an estimate of the expected value of a state.
• cutting-off search – determine a reasonable time to stop search (e.g. iterative

deepening explores deeper until time elapses).
Games of Chance

• chance nodes – nodes (denoted by circles) indicating an element of chance is
introduced and arcs from this node are probabilistic transitions

o The minimax algorithm is identical & chance nodes are expected values:

() () ()
()

expectiminimax expectiminimax
s child n

n P s s n Chance
∈

= ⋅ ∈∑

� In games of chance, the evaluation function must be a positive
linear transform of the probability of winning from a position.

Games of Chance with imperfect information
• averaging over clairvoyancy – the strategy of computing optimal moves by

averaging over possibilities for the unseen variables.
o This strategy is flawed as it assumes all future uncertainty will have

disappeared by the time the future is reached.
• belief states – games states are replaced by possible states along with their

corresponding probabilities.

Propositional Logic

Knowledge-Based Agents
• logical agents are always definite – each proposition is either true/false or

unknown (agnostic).
• knowledge representation language (KRL) – expresses world knowledge.

o declarative approach – language is designed to be able to easily express
knowledge for the world the language is being implemented for.

o procedural approach – encodes desired behaviors directly in code.
• sentence – a statement expressing a truth about the world in the KRL.
• knowledge base (KB) – a set of KRL sentences describing the world.

o background knowledge – initial knowledge in the KB
o knowledge level – we only need to specify what the agent knows and

what its goals are in order to specify its behavior
o Tell(P) – function that adds knowledge P to the KB.
o Ask(P) – function that queries the agent about the truth of P.

• inference – the process of deriving new sentences from the knowledge base.
o When the agent draws a conclusion from available information, it is

guaranteed to be correct if the available information is correct.

Logic
• syntax – description of a KRL in terms of well-formed sentences of the language.
• semantics – defines the truth of statements in the KRL w.r.t. each possible world.
• model – the “possible world” that is described by a KB.

o model checking – enumeration of all possible models to ensure that α is
true in all models in which KB is true.

• logical inference – the process of using entailment to derive conclusions
• logical entailment – the concept of 1 sentence following from another sentence:

|α β= if α is true, then β must also be true.
Note: while similar to the notion of implication, entailment is a meta-
statement, not a part of the language itself. That is, statements using
entailment are used to describe other logical statements.

o Monotonicity – a set of entailed sentences can only increase in
information as information is added to the knowledge base.

| |KB KBα β α= ⇒ ∧ =

• derivation – if an inference procedure i can derive α from KB,
| iKB α−

• sound (truth-preserving) inference – an inference procedure that derives only
entailed sentences.

o if KB is true in the real world, the any sentence α derived from KB by a
sound inference procedure is also true in the real world.

• complete inference – an inference procedure that can derive all entailed sentence.
• grounding – the connection, if any, between the logical reasoning processes and

the real environment.

Propositional Logic
• atomic sentence – indivisible syntactic elements consisting of a single

propositional symbol. True and False have fixed meaning.
• complex sentence – sentence constructed from other sentences joined by logical

connectives:
o logical connectives:

� not ¬ – negation, and ∧ – conjunction, or ∨ – disjunction
� implies ⇒ – implication (() ()α β α β⇒ ≡ ¬ ∨) Note: if α is

false, α β⇒ says nothing about β.
� if and only if ⇔ – biconditional

o order of operations (high->low): , , , ,¬ ∧ ∨ ⇒ ⇔

• Every known inference algorithm for propositional logic has a worst-case
complexity exponential in the size of the input.

• logical equivalence – two sentences α and β are logically equivalent if they are
true in the same set of models.

| |α β α β β α≡ ⇔ = ∧ =

• validity – a sentence is valid if it is true in all models.
o tautology – sentences that are necessarily true.

• Deduction Theorem – For any sentences α and β, |α β= if and only if the
sentence α β⇒ is valid.

• Satisfiablility – a sentence is satisfiable if it is true in some model.
o Determining satisfiablity in propositional logic is NP-complete.
o Proof by contradiction (refutation): |α β= if and only if the sentence

()α β¬ ⇒ or rather ()α β∧ ¬ is unsatisfiable.

• inferentially equivalent – two sentences α and β are inferentially equivalent if
the satisfiablity of α implies the satisfiablity of β and vice versa.

Reasoning Patterns in Propositional Logic
Common Patterns
 Modus

Pones
And

Eliminate
Bidirectional Resolution

Premises ,α β α⇒ α β∧ α β⇔
1 ,k i∨ ∨ ¬ℓ … ℓ ℓ

Conclusion β α () ()α β β α⇒ ∧ ⇒ 1 1 1i i k− +∨ ∨ ∨ ∨ ∨ℓ … ℓ ℓ … ℓ

Full Resolution Rule

 1 1

1 1 1 1 1 1

k n

i l k j j n

m m

m m m m− + − +

∨ ∨ ∨ ∨
∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

ℓ … ℓ …

ℓ … ℓ ℓ … ℓ … …

where iℓ and jm are complementary literals

• conjunctive normal form (CNF) – every sentence of propositional logic is
logically equivalent to a conjunction of disjunctions of literals.

() ()
11,1 1, ,1 , mn m m nl l l l∨ ∨ ∧ ∧ ∨ ∨… … …

1. Eliminate biconditionals: () ()α β α β β α⇔ ≡ ⇒ ∧ ⇒

2. Eliminate implications α β α β⇒ ≡ ¬ ∨
3. Move ¬ inwards
4. Distribute ∧ over ∨ .

• A complex sentence can always be represented in CNF.
1. literal – atomic sentence (positive) or negated atomic sentence (negative).
2. clause – a disjunction of literals
3. sentence – a conjunction of clauses.

• Definite Clauses – disjunction of literals of which exactly one is positive.

�
1 1m m

headbody

n n p n n p¬ ∨ ∨ ¬ ∨ ≡ ∧ ∧ ⇒… …

�����

o head – the positive literal.
o body – the negative literals; the premises.
o fact – a definite clause with no negative literals.
o Horn clause (integrity constraint) – a disjunction of literals at most one of

which is positive. Horn clauses have the following advantages:
� Inference can be done with forward/backward chaining.
� Deciding entailment is linear in the size of the KB.

• resolution – a sound inference algorithm based on the resolution rule.
o By applying the only the resolution rule, any complete search algorithm

can derive any conclusion entailed by any KB in propositional logic.
o refutation completeness – resolution can be used to confirm or refute any

sentence, but it cannot enumerate all true sentences.
o resolution algorithm

� to show |KB α= we will show that KB α∧ ¬ is unsatisfiable.
� KB α∧ ¬ is converted into CNF… a sequence of clauses
� The resolution rule is applied to resulting clauses… each pair with

complementary literals is resolved into a new clause.
• if no new clauses can be added, α is not entailed.
• if the empty clause {} is derived, α is entailed.

• forward chaining – a sound and complete inference algorithm (for Horn clauses)
that is essentially Modus Pones. This algorithm is data-driven reasoning;
reasoning which starts from the known data.

o AND-OR graph – represents the derivation by a graph of literals.
Disjunctions are represented by converging links and conjunctions are
represented by multiple links joined by an arc.

• backward chaining – a sound and complete inference algorithm (for Horn
clauses) based on Modus Pones. This algorithm is goal-directed reasoning;
reasoning that works backward from the goal.

Satisfiability
• Davis-Putnam algorithm – an algorithm for checking satisfiability based on the

fact that satisfiability is commutative. Essentially, it is a DFS method of model
checking.

o Heuristics
� early termination – short-circuit logical evaluations. A clause is

true if any literal is true. A sentence is false if any clause is false.
� pure symbol heuristic – a symbol that appears with the same sign

in all clauses of a sentence (all positive literals or negative ones).
• Making these literals true can never make a clause false.

Hence, pure symbols are fixed respectively.
� unit clause heuristic – assignment of true to unit clauses.

• unit clause – a clause in which all literals but one have
been assigned false � 1 way to make clause true.

• unit propagation – assigning one unit clause creates another
causing a cascade of forced assignments.

• WalkSAT – a local search algorithm based on the idea of a random walk that
randomly alters the current assignment based on a min-conflicts heuristic.

o If a satisfying assignment exists, it will be found, eventually.
o WalkSAT can not guarantee a sentence is unsatisfiable.

• Hard Satisfiablility
o Let m be the number of clauses and n be the number of symbols.
o The ratio m/n is indicative of the difficulty of the problem.

� underconstrained – relatively small m/n thus making the expected
number of satisfying assignments high.

� overconstrained – relatively high m/n thus making the expected
number of satisfying assignments low.

� critical point – value of m/n such that the problem is nearly
satisfiable and nearly unsatisfiable. Thus, the most difficult cases
for satifiablity algorithms

P

Q P Q P Q

Q P→ P Q∧ P Q∨

Propositional Logic Agents
• inference-based agent – an agent that maintains a knowledge base of

propositions and uses the inference procedures described above for reasoning.
o It is beyond the power of propositional logic to efficiently express

statements that are true for sets of objects – FOL.
o A proliferation of clauses occurs due to the fact that a different set of

clauses is needed for each step in time.
• circuit-based agent – a reflex agent in which percepts are inputs to a sequential

circuit – a network of gates (logical connectives) and registers (store truth value
of a single proposition)

o dataflow – at each time step, the inputs are set for that time step and
signals propagate through the circuit.

o delay line – implements internal state by feeding output of a register back
into the register as input at the next time step. The delay is represented as
a triangular gate.

First-Order Logic

Differences in Logics
• Ontological Commitment – What the logic assumes about the state of reality.
• Epistemological Commitment – the possible state of knowledge a logic allows

with respect to each fact.

Language Ontological Epistemological
Propositional Logic Facts T/F/unknown
1st-order Logic Facts, objects,

relations
T/F/unknown

Temporal Logic Facts, objects,
relations, time

T/F/unknown

Probability Theory Facts Degree of belief
Fuzzy Logic Facts with degree of

truth
Known interval value

Syntax of First Order Logic
• Objects: the domain of the model is the set of objects in it � constant symbols.
• Relations: a set of tuples of objects that are related � predicate symbols.
• Function: an object can be related to exactly 1 object. Functions in FOL must be

total functions that must be defined over the whole domain � function symbols.
o The arity of a relation or function is the number of arguments it takes.

• intended interpretation – the interpretation specify what each symbol actually
represents in the real world.

• term – a logical expression that refers to an object.
o ground term – a term with no variables.

• atomic sentence – a predicate symbol followed by a parenthesized list of terms;
the arguments. An atomic sentence is true (under the given interpretation) if the
predicate holds for the objects given as arguments.

• complex sentence – atomic sentences joined by logical connectives.
• quantifiers – allow us to express properties of groups of objects.

o Universal ()x P x∀ - for all objects x, P(x) holds. P(x) usually formed

with connective ==>.
o Existential ()x P x∃ - there exists an object x, such that P(x) holds.

Typically used with the connective AND.
• Equality – Asserts that two statements are equivalent.

Semantics of First-Order Logic
• assertion – sentences that assert what is known about the world.
• queries (goals) – questions asked to the KB. Answered in a list of substitutions

that satisfy the query.
• substitution (binding list) { }/x X - set of variable/term pairs that represent

substituting the term X for the variable x.
o (),SUBSTθ α applies the substitution θ to sentence α.

• axiom – basic factual information from which conclusions are derived. Each
axiom cannot be entailed by the KB without explicitly including it.

• theorems – facts entailed by the axioms.
• perception – the reasoning process by which percepts are entailed from the KB.

Types of rules in FOL
• synchronic – sentences relating properties of a world state to other properties in

the same world state.
o Diagnostic Rules – lead from observed effects to hidden causes.
o Casual Rules – hidden properties cause observed precepts.
o Model-Based Reasoning – Systems that use casual rules to model the

world.
• diachronic - sentences relating properties of a world state to other properties in

another world state; thus allowing reasoning across time.
• If the axioms correctly and completely describe the way the world works and the

way that percepts are produced, then any complete logical inference procedure
will infer the strongest possible description of the world state given the available
precepts.

Knowledge Engineering – process of constructing a knowledge base.

1. Identify the task
2. Assemble relevant knowledge; knowledge acquisition
3. Decide on vocabulary of predicates, functions, and constants = ontology.
4. Encode general knowledge about the domain = axioms.
5. Encode a description of the specific problem instance = knowledge base.
6. Pose queries KB and get answers.
7. Debug the knowledge base.

Inference in First-Order Logic
The question of entailment for first-order logic is semidecidable – algorithms exist that
are able to correctly identify every entailed sentence, but no algorithm can correctly
identify every nonentailed sentence.

Fundamentals
• Converting quantified statements

o Universal Instantiation – substitute variable of a universally quantified
statement with a ground term. Can be applied repeatedly.

{ }()SUBST / ,

v

v g

α
α

∀

o Existential Instantiation – substituting a ground term, Skolem constant, for
the variable in an existential statement. Can only be applied once!

{ }()SUBST / ,

v

v k

α
α

∃

If the Existential quantifier is embedded in a universally quantified
statement, you must use a skolem function of the universally quantified
variables.

• Propositionalization – the process of converting a first-order sentences into
propositional logic.

o a propositionalized KB is inferentially equivalent to the original KB but
not logically equivalent.

• Conjunctive Normal Form – a conjunction of clauses where each clause is a
disjunction of literals.

o Every sentence in FOL can be converted into an inferentially equivalent
CNF sentence.

o Conversion to CNF:
1. Eliminate implications using: p q p q⇒ ≡ ¬ ∨
2. Move ¬ inwards in quantified statements.
3. Standardize Variables: eliminate repeated names.
4. Skolemization: removal of existential quantifiers with Skolem

functions (for every enclosing universal quantifier variable) or
Skolem constants.

5. Drop universal quantifiers.
6. Distribute ∧ over ∨ .

• Unification – the process of finding substitutions that make different logical
expressions look identical. Given two sentences, p and q, UNIFY returns the
most general unifier θ, if a unifier exists.

() () ()UNIFY , | SUBST , SUBST ,p q p qθ θ θ= =

o standardizing apart – renaming variables to avoid name clashes.
o most general unifier – for every unifiable pair of expressions there is a

unique unifier that is more general than any other.
� A unifier is more general than another unifier if the first places

fewer restrictions on the values of the variables.
o occur check – when matching a variable against a complex term, one must

check whether the variable itself occurs in the term, in which case the
unification fails.

• Generalized Modus Ponens – A lifted version of Modus Pones for FOL. For

atomic sentences pi, pi’, and q, where () ()()SUBST , SUBST ,i ii p pθ θ θ′∃ ∀ =

()
()

1 2 1 2, , , ,

,
n np p p p p p q

SUBST qθ
′ ′ ′ ∧ ∧ ∧ ⇒… …

Forward Chaining – Uses Modus Pones to infer new atomic sentences in the KB
until no more inferences are possible. This approach is sound and is complete for definite
clause KBs. FOL Inference with definite clauses is semidecidable due to functions.

• Datalog KB – set of first-order definite clauses with no function symbols.
• fixed point – a state of the KB for which no further sentences can be inferred.

Backward Chaining – works backwards from the goal, matching the effects of rules
to support the desired proof based on Modus Pones. It is a DFS search � linear space
complexity; repeated states and incompleteness.

• Algorithm outline:
o A list of unsatisfied goals is kept as a stack; 1 for each branch of the proof.
o If all goals of the stack are satisfied by the initial state, the proof succeeds.
o Goals are popped off the stack and if unsatisfied:

� Every clause whose head unifies with the goal makes a separate
branch of the proof.

� The body of each such clause are added to the stack: a new branch.
• Problems with Backward Chaining

1. Repeated States – inference can be exponential in number of ground facts.
� memoization – caching solutions to subgoals for reuse.

2. Infinite Paths –makes backward chaining incomplete.

Logic Programming – logic is expressed as formal declarative language and used to
solve problems via inference.

• Prolog – logic PL with depth-first backward chaining.
o Rules expressed as follows:

1 1: , , .m mp n n n n p= ≡ ∧ ∧ ⇒… …

o Built in arithmetic functions and some predicates have side-effects
o Negation as failure – if a goal P can not be proved, P¬ is considered

true.
o Occur Check is omitted � unsound.
o Prolog can be compiled or interpreted.

� compiled – a miniature theorem prover is created.
� interpreted – intermediate language executed by Warren Abstract

Machine.

Generalized Resolution – an extension of propositional resolution to FOL.

• Proof by contradiction – The goal is negated and added to the KB. If the empty
clause {} is derived, the goal has been proved.

o Proofs derived in this way are non-constructive: they only indicate
whether the query is true or false, not what variables make it so.

1. Restrict query variables to a single binding and backtrack.
2. Add an answer literal as a disjunction with the negated goal. The

resulting non-constructive proof will have a disjunction of possible
answers instead of an empty clause � multiple answers.

• Algorithm outline
o Begin with propositionalization and conversion to CNF.
o Binary resolution can be applied to clauses with complementary literals.
o The Resolution Inference Rule

� First-order literals are complementary if one unifies with the
negation of the other.

� binary resolution rule:

()
1 1

1 1 1 1 1 1SUBST ,
k n

i l k j j n

l l m m

l l l l m m m mθ − + − +

∨ ∨ ∨ ∨
∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

… …

… … … …

 where (),i jUNIFY l m θ¬ =

� factoring – reduces two literals to one if they are unifiable.
• Together, the binary resolution rule and factoring are complete.
• Completeness of Resolution – If S is an unsatisfiable set of clauses, then the

application of a finite number of resolution steps to S will yield a contradiction.

Acting Under Uncertainty
• Agents almost never have access to all of their environment’s information.

o This qualification problem is due to 3 things
1. Laziness – too much work to explore all possiblities
2. Incomplete Theory
3. Practical Limitiations – not all tests can be performed

o Must be able to derive a plan that will work most of the time.
o In uncertain environments, the rational decision depends on

1. The relative importance of various goals
2. The likelihood and degree of achievement of each goal

• Agent’s knowledge provides a degree of belief � Probability Theory
o Probability Theory provides the degree to which an agent believes a

statement given all plausible alternative situations that are
indistinguishable from the current situation.

o Probability Theory has the same ontological commitment as logic
� Facts either hold or do not hold in the world

o Probabilities depend on the evidence (precepts) the agent has aquired.
• Agents must have preferences towards the outcomes of different plans.

o Utility Theory – Theory of preference based on an object’s utility.
� Preference indicates that different agents might have different

goals so while goals might seem misguided, they are not
necessarily irrational.

o Decision Theory – Combination of Probability and Utility Theory.
� Principle of Maximum Expected Utility - An agent is rational iff

it chooses the action that yields the highest expected utility
(averaged over all outcomes).

• Belief State – a representation of probabilities of all possible actual states of the
world.

Probability Theory
• Language of Probability – ascribes degrees of belief to propositions.

o Random Variable – refers to part of the world with initial unknown status
o Domain – the values a random variable can take on.

� Boolean – true/false
� Discrete – countable, mutually exclusive, and exhaustive.
� Continuous – uncountable

o Atomic Event – a specific complete specification of the world about
which the agent is uncertain.

� The set of atomic events is mutually exclusive and exhaustive �
forms a partition

� Any atomic event entails true/false for every proposition.
� Any proposition is equivalent to the disjunction of all atomic

events that entail the proposition as true.
• Prior Probability P(x) – the degree of belief of proposition x in the absence of

any evidence about other propositions.
o Probability Distribution , P(X) – the vector of probabilities ascribed to

each of the possible states of proposition X.
o Joint Probability Distribution , P(X1,X2,…,Xn) – the probabilities of all

combinations of values of variables X1, X2, …, Xn.
o Full Joint Probability Distribution – includes the complete set of

variables for the environment.
o Probability Density Function, p(x)dx – The probability of a continuous

variable on the interval [x,x+dx] in the limit as dx � 0.
• Conditional Probability P(x|y) – the degree of belief in proposition x given the

evidence y.
• Product Rule: (,) (|) ()P X Y P X Y P Y=
• Kolmogrov’s Axioms

1. All probabilities are between 0 and 1:

()0 1P a≤ ≤

2. True propositions have probability 1; false propositions have 0:

() ()1 0P true P false= =

3. Probability of a disjunction is given by

() () () ()P a b P a P b P a b∨ = + − ∧

• Using these Axioms we can derive other important rules:
o Let a discrete variable X have a domain { }1 2, , , nx x x… or χ :

()
1

1
n

i
i

P X x
=

= =∑ or () 1P x dx
χ

=∫

o The probability of a proposition is equal to the sum of the probabilities in
which it holds; the set e(a) for proposition a.

() ()
()i

i
e a

P a P e
∈

= ∑
e

• In probability, statements do not refer directly to the world, but rather to an
agent’s belief about the world, so why can’t agent’s beliefs violate the probability
axioms?

o de Finetti Theorem – If Agent 1 expresses a set of degrees of belief that
violate Kolmogorov’s Axioms, then there is a combination of bets Agent 2
can place that guarantees that Agent 1 will lose money every time.

• Probability Philosophy
o Frequentist – probabilities are results of repeated experiments.
o Objectivist – probabilities come from a propensity of objects to act in a

certain way.
o Subjectivist – probabilities are a way of characterizing beliefs.

Probabilistic Inference – computation of posterior probability of query proposition from
observed evidence.

• Marginalization (Conditioning) – variables other than the query variable are
summed out in order to obtain the probability of the query variable:

() ()

() () ()

joint : ,

conditional: |
z

z

P Y P Y z

P Y P Y z P z

=

=

∑
∑

• Normalization – introduction of constant α that normalizes the distribution to 1.

(Marginal) Independence – variables independent of each other can be factored:

() () () () (), |P X Y P X P Y P X Y P X= =

• If a complete set of variables can be divided into independent subsets, then the
full joint distribution can be factored into separated joint distributions on those
subsets.

Bayes’ Rule – application of product rule that allows diagnostic beliefs to be derived
from casual beliefs:

() () ()
() () () ()

()
| | , |

| | ,
|

P X Y P Y P X Y e P Y e
P Y X P Y X e

P X P X e
= =

• Diagnostic knowledge is often more fragile than casual knowledge � direct
casual (model-based) knowledge provides robustness needed for probabilistic
systems to function in the real world.

• Conditional Independence – implies that two variables X,Y are independent given
variable Z:

() () () () (), | | | | , |P X Y Z P X Z P Y Z P X Y Z P X Z= =

Naïve Bayes Model – a single cause Y directly influences a number of events Xi that are
all conditionally independent given the cause:

() () ()1 2, , , , |n i
i

P Y X X X P Y P X Y= ∏…

Probabilistic Reasoning
• Bayesian Network (Belief Network, Probabilistic Network, Casual Network, or

Knowledge Map)
o A directed acyclic graph (DAG) representing the dependency structure

amongst random variables thus providing a concise specification of any
full joint probability distribution.

� Nodes – the random variables of the problem (observed variables
are shaded).

� Each node Xi has a conditional probability distribution

representing ()()|i iP X parents X . In the discrete variable case,

this can be represented by a Conditional Probability Table (CPT).
� Directed Arcs – represent the dependency of one random variable

on another. In the Undirected case, represents interdependency
between two variables.

o The Bayesian Network captures conditional independence relationships in
its edges.

o Probabilities summarize a potentially infinite set of circumstances that are
not explicit in the model but rather appear implicitly in the probability.

o If each variable is influenced by at most k others and we have n random
variables, we only need to specify n*2k probabilities instead of 2n.

o More general case of Bayesian Network is “Graphical Model”.
• Conditional Probability Table (CPT) - describes the conditional probability of

each value of the node for each conditioning case, or possible combination of the
values of the parent nodes.

o In general the size of the table is

() ()
()

#
j i

i j
X parents X

X X
∈

⋅ ∏

where #() specifies the size of the domain of a variable.
o The size of the table can be reduced since the total probability for each

conditioning case must be 1.
• Chain Rule:

o General:

() ()1 2 1 2 1
1

, , , | , , ,
n

n i i
i

P X X X P X X X X−
=

= ∏… …

o In the case of a BN, if we number the nodes in topological order, the
conditional terms in ()1 2 1| , , ,i iP X X X X−… are all predecessors of Xi and

thus, conditional independence reduces this to ()()|i iP X parents X .

o Chain Rule in BN:

() ()()1 2
1

, , , |
n

n i i
i

P X X X P X parents X
=

= ∏…

• Constructing a Bayesian Network
o The parents of node Xi should be all nodes that directly influence Xi from

the set of nodes X1, …, Xi-1.
o The correct order in which to add nodes is to add the “root causes” first,

then the variables they influence, and so on until leaves are reached.
o Slight dependences may not be worth adding due to increased complexity.
o Constructing Networks for a “Causal Model” will result in specifying

fewer numbers, which are often easier to come up with.
• Independence in a Bayesian Network

o A node is conditionally independent of all non-descendants given its
parents.

o A node is conditionally independent of all other nodes in network given its
Markov Blanket (parents, children, and children’s parents).

o d-separation – two nodes X and Y in a BN are d-separated if every path
between X and Y is blocked.

� A path between X and Y is blocked if it has any of the following 3
cases for any 3 nodes along the path.

• head-to-tail with intermediary observed: |A B C⊥
• tail-to-tail with intermediary observed: |A B C⊥
• head to head with neither the intermediary nor any of its

descendants observed: |A B⊥ ∅

• Canonical distributions: fit a standard pattern with an easily filled in CPT.
o deterministic node – value is specified exactly by value of parents with

no uncertainty.
o noisy-OR – uncertain ability of each parent to cause the child to be true

since the causal relationships may be inhibited.
� Assumes all possible causes are listed (others can be grouped in a

leak node for miscellaneous causes).
� Assumes the inhibition of each parent is independent of the others.
� Hence, we need only specify O(k) parameters instead of O(2k) for

k causes: the probability of inhibition of each of the causes.
o other noisy-operators (MAX, AND, etc).

A C A C A B C A B

• Continuous Random Variables:
o discretization – dividing variable’s possible values into intervals.
o parameterization – describing the variable’s distribution by a finite set of

parameters.
o hybrid BN – a BN containing both discrete and continuous variables.
o conditional distributions for continuous variables:

� discrete parents’ values are enumerated.
� continuous parents’ must be summarized in a distribution, for

instance, the linear Gaussian distribution where mean varies
linearly with parents’ value and std dev is fixed: ax bµ = + .

� linear Gaussian has joint distribution is multivariate Gaussian over
all variables. These are combined with discrete variables in
conditional Gaussians.

o conditional distributions for discrete variables with continuous parents.

Approximate Inference in Bayesian Networks

• Monte Carlo algorithms – algorithms that approximate a desired quantity through
random sampling.

• Direct Sampling
• Rejection Sampling
• Likelihood Weighting
• Markov chain Monte Carlo (MCMC) – a sampling technique that settles into a

dynamic equilibrium such that the long-term fraction of time spent in each state is
exactly its posterior probability given certain conditions.

o Markov chain – a structure that defines the probability of transitioning
from the “current” state to the “next” state.

� transition probability ()'q →x x - the probability that the process

transitions from state x to state x’ .
� ergodic – essentially every state much be reachable from every

other and there can be no strictly periodic cycles.
� state distribution ()tπ x - the probability of being in state x at the

t-th step of the Markov chain.
o stationary distribution – a state distribution such that 1t tπ π +=

() () ()' ' 'qπ π∀ = →∑
x

x x x x x

� This distribution is unique if the chain is ergodic.
� A distribution is stationary if it satisfies the detailed balance

equation:

() () () (), ' ' ' 'q qπ π∀ → = →x x x x x x x x

Probabilistic Reasoning Over Time

Modeling Uncertainty over Time
• Setting

o tX - a set of unobserved state variables at time t.

o tE - a set of observable evidence variables for time t.

o a:b – denotes an interval from a to b.
• Stationary Process – process of change that is governed by laws that do not

change over time.
• Markov Assumption – current state depends only on a finite history of previous

states. Processes satisfying this assumption are Markov Processes (Chains).
o transition model – law describing how state changes over time.

() ()0: 1| |t t tP X X P X Xα− = where { }1 1tα ⊆ −…

o first-order Markov Process – current state is solely dependent on the
previous state

� transition model: ()1|t tP X X −

• We assume the evidence variables at time t depend only on the current state.
o sensor model – law describing how the evidence depends on the state.

() ()0: 0: 1| , |t t t t tP E X E P E X− =

• prior probability for the initial state: ()0P X

• complete joint

() () () ()0: 1: 0 1
1

, | |
T

T T t t t t
t

P X E P X P X X P E X−
=

= ∏

Filter (monitoring) – the task of computing the belief state – the posterior distribution
of the current state given all evidence; ()1:|T TP X e .

• Recursive estimation – forward chaining.
() () () ()

1

1: 1 1 1: 1

recursive estimate

| | | |
t

t t t t t t t t
X

P X e P e X P X X P X e
−

− − −∝ ∑
�������

 ()1: 1: 1,t t tf FORWARD f e−∝

• When the state variables are discrete, this update is constant in space and time.
• Likelihood ()1:TP e can be calculated by a likelihood message: ()1: 1:,t t tl P X e= :

Prediction – task of computing the posterior distribution over a future state, given all
evidence; ()1:|T k TP X e+ where k > 0.

• This is equivalent to filtering without new evidence. Hence, we can easily derive
the following update:

() () ()1: 1 1 1:

recursive estimate

| | |
t k

T k T T k T k T k T
X

P X e P X X P X e
+

+ + + − + −=∑
�������

• stationary distribution – The fixed point of the Markov process that is
approached upon successive applications of the transition model.

o mixing time – the amount of time required to reach stationarity.
o Prediction is doomed to failure for future times more than a small fraction

of the mixing time.

Smoothing (hindsight) – task of computing posterior distribution for a past state,
given all evidence; ()1:|k TP X e where 0 k T≤ < .

• Accounting for hindsight is done with an additional backwards message:

() () ()
1: 1:

1: 1: 1:| | |

k k T

k T k k k T k

f b

P X e P X e P e X

+

+∝
������������

 () ()
1

1: 1 1 1 2:| |
k

k T k k k k k T
X

b P e X P X X b
+

+ + + + +=∑

• The time and space needed for each backward message are constant.
• Thus, the process of smoothing with respect to 1:Te is O(t).

• Thus, to smooth the whole sequence naively, requires O(t2).
• using dynamic programming the cost is only O(t) by recording results of forward

filtering over the entire sequence while running the backward algorithm from T to
1 and use the smoothed message at each time step � forward-backward algo.

o space is now ()O f t

Most Likely Explanation – task of finding the sequence of states most likely to
have generated a sequence of observations; ()

1: 1: 1:arg max |
tx t tP x e .

• most likely sequence must consider joint probabilities over all time steps.
• there is a recursive relationship between most likely paths to each state Xt+1 and

the most likely paths to each state Xt.
• Recursive formulation:

o messages: ()
1: 1

1: 1: 1:max |
t

t t t
X

m P X e
−

=

o summation over Xt replaced by a maximization.
• Pointers are used to retrieve the most-likely explanation
• Viterbi algorithm has a space and time requirement of O(t).

Hidden Markov Models (HMM) – a temporal probabilistic model in which the state
of the process is described by a single discrete random variable and transitions obey the
Markov assumption.

• transition model: ()1|ij t tT P X j X i−= = =

• observation model: () (),
|t ti i

P e X i= =tO

o forward message - 1: 1 1 1:
T

t t t+ +∝f O T f

o backward message - 1: 1 2:k t k k t+ + +∝b TO b

Kalman Filters – a temporal probabilistic model for continuous state spaces under the
Markov assumption and using linear Gaussian distributions to model the states.

• a multivariate Gaussian distribution can be specified completely by its mean µ
and its covariance matrix Σ .

• In general, filtering with continuous or hybrid spaces generate state distributions
whose representations grow without bound, but the Gaussian distribution is “well-
behaved” since it has the following properties:

1. If the current distribution ()1:|t tP X e is Gaussian and the transition model

()1 |t tP +X x is linear Gaussian, then the predicted distribution is:

() () ()1 1: 1 1:| | |
t

t t t t t t tP P P d+ += ∫xX e X x x e x

2. If the predicted distribution is Gaussian and the observation (sensor)
model is linear Gaussian, then conditioning on new evidence yields:

() () ()1 1: 1 1: 1 1 1 1:| | |t t t t t tP P P+ + + + +∝X e e X X e

• General formulation:

() ()()1 1| ,t t t x tP N+ +=x x Fx Σ x

• F and xΣ describe the linear transition model & noise.

() () ()| ,t t t z tP N=z x Hx Σ z

• H and zΣ describe the linear sensor model & noise.

• Extended Kalman Filter (EKF) – allows for limited nonlinearity in the model
by modeling the system locally as linear in tx in the region of t t=x µ .

• Switching Kalman Filter – multiple Kalman Filters run in parallel each using a
different model of the system. The resulting prediction is a weighted sum
depending on how well each filter fits the current data.

Dynamic Bayesian Networks (DBN) – a Bayesian network that represents a
temporal probability model by having state variables Xt replicated over time slices with
the same conditional independences. We also have evidence at each time slice Et.

• Constructing DBNs
o We need 3 broad types of information:

1. a prior distribution on the initial variables: ()0P X

2. a transition model: ()|t+1 tP X X

3. a sensor model: ()|t tP E X

o In addition, we must specify a local and temporal topology of the nodes.
o Issues we need to deal with:

� Noise: we assume that our measurements are noisy, which we
model with a Gaussian error model.

� Failure: in the real-world, sensors fail…
• transient failure model – allocates a probability that the

sensor will return some nonsense value.
• persistent failure model – describes how a sensor behaves

under normal and failure conditions. There is a small
probability of failure, but it models the fact that sensors
tend to remain broken.

• Exact Inference – given a sequence of n observations, we simply construct the
necessary DBN of n time slices – a process known as unrolling .

o An efficient process uses variable elimination before proceeding to the
next time slice – this is equivalent to starting at X t with a new initial
distribution determined by our variable elimination.

o We cannot efficiently and exactly reason about the complex temporal
processes represented by general DBNs.

• Approximate Inference
o Overcoming these blocks relies on 2 observations.

� We use the samples as approximate representations of the current
state distribution.

� Generating the samples with naïve likelihood weighting will have
~0 probability of matching the evidence.

• We want to focus the set of samples on the high-probability
regions of the sate space.

o particle filtering – leverages the above observations to make an efficient
sampling algorithm that is consistent. We begin with N samples from the
prior distribution at time 0: ()0P X . Then we use an update cycle:

� Each sample is propagated to next time slice by sampling the next
state value xt+1 given xt using the transition model ()|t+1 tP X X .

� Each sample is weighted by the likelihood it assigns to the new
evidence: ()| +t+1 t 1P e x from the sensor model.

� A new population of N samples is resampled: each new sample is
selected proportional to its likelihood weight.

Making Simple Decisions
decision-theoretic agent – an agent capable of making decisions in the face of
uncertainty and conflicting goals. Unlike a goal-based agent (only views each state as
‘good’ or ‘bad’) a decision-theoretic agent makes a continuous measure of state quality.

Combining Belief and Desire under Uncertainty
• utility function – a function that assigns a single number to each state expressing

its desirability. These are combined with the probability of each action’s actual
outcome to give expected utility of the action.

o expected utility:

[] () ()() ()()| Result | , Resulti i
i

EU A E P A Do A E U A=∑

� A is the action, E is the evidence
o principle of maximum expected utility (MEU) – a rational agent should

choose the action that maximizes it’s expected utility.

Utility Theory
1. A B≻ A is preferred to B.
2. A B∼ agent is indifferent between A and B.
3. A B≻

ɶ
 agent prefers A to B or is indifferent.

• Lottery – a set of outcomes Ci with a probability pi: []1 1 2 2, ; , ; ; ,n nL p C p C p C= …

• Axioms of Utility Theory
1. Orderability – for any two states, an agent must prefer one to the other or

else be indifferent between them.

() () ()A B A B A B∨ ∨≻ ≺ ∼

2. Transitivity –A preferred to B, & B preferred to C, then A preferred to C.

() () ()A B B C A C∧ ⇒≻ ≻ ≻

3. Continuity – If B is between A and C in preference, there exists
probability p for which the agent is indifferent between getting B for sure
and a lottery that yields A with probability p and C with probability 1-p.

[], ;1 ,A B C p p A p C B⇒ ∃ −≻ ≻ ∼

4. Substitutability – an agent indifferent to A and B is indifferent to 2 more
complex lotteries, 1 with each A and B.

[] [], ;1 , , ;1 ,A B p A p C p B p C⇒ − ⇒ −∼

5. Monotonicity – If 2 lotteries have the same outcomes, A and B, and agent
prefers A to B, then it also prefers the lottery with higher probability of A.

[] [], ;1 , , ;1 ,A B p q p A p B q A p B⇒ ≥ ⇔ − −≻ ≻
ɶ

6. Decomposability – Compound lotteries can be decomposed:

[] () ()(), ;1 , , ;1 , , ; 1 , ; 1 1 ,p A p q B q C p A p q B p q C   − − − − −   ∼

• Utility
1. Utility Principle

() ()
() ()

U A U B A B

U A U B A B

> ⇔

= ⇔

≻

∼

2. Maximum Expected Utility Principle

[]() ()1 1, ; ; ,n n i i
i

U p S p S pU S=∑…

Multiattribute Utility Functions
• multiattribute utility theory – utility theory for outcomes involving two or

more attributes: 1, , nX X=X … .

• strict dominance – option 1 has higher value on all attributes than another option
2. Clearly the 1st option is chosen.

• stochastic dominance – if two actions A1 and A2 lead to probability distributions
p1(x) and p2(x) on attribute X, then A1 stochastically dominates A2 on X if,

() ()1 2

x x
x p y dy p y dy

−∞ −∞
∀ ≤∫ ∫

o If A1 stochastically dominates A2, then for any monotonically
nondecreasing utility function U(x), the expected utility of A1 is at least as
high as the expected utility of A2.

o qualitative probabilistic networks – algorithms for making rational
decisions based on stochastic dominance alone.

• representation theorems – theorems that identify regularities in preference

behavior; () () ()1 1 1, , , ,n n nU x x f f x f x =  … …

• preference independence – attributes X1 and X2 are preferentially independent
of X3 if the preference between outcomes 1 2 3, ,x x x and 1 2 3', ',x x x doesn’t

depend on the value x3.

• mutual preferential independence (MPI) – no attributes affect the way in
which one trades off to the other attributes against each other

o If attributes 1, , nX X… are mutually preferentially independent, then the

agent’s preference behavior can be described as maximizing the function

() ()1, , n i i
i

V x x V x=∑…

where each Vi is a value function referring only to the attribute Xi.
o additive value function – a multiattribute value function that is the sum

of value functions for individual attributes.
• utility-independence – an extension of preference independence to lotteries. A

set of attributes X is utility-independent of a set of attributes Y if preferences
between lotteries on the attributes in X are independent of the particular values of
the attributes in Y.

• mutually utility-independent (MUI) – each subset of a set of attributes is
utility-independent of the remaining attributes.

o multiplicative utility function – a function that can express the behavior
of any agent exhibiting MUI in only n single-attribute utilities and n
constants for n attributes.

Decision Networks
• decision network – a Bayesian network with additional node types for actions

and utilities. Contains information about the agent’s current state, its possible
actions, the state resulting from the agent’s action, and the utility of the state.

o Structure
� Chance nodes (ovals) – represent random variables each with a

conditional distribution indexed by parent states. Parents can be
other chance nodes or decision nodes.

� Decision nodes (rectangles) – represent points where agent has a
choice to make.

� Utility nodes (diamonds) – represent the agent’s utility function.
Its parents are all variables directly affecting utility.

o action-utility tables – A simplified form in which the action is connected
directly to the utility thus making the utility node represent the expected
utility… a compiled version.

• algorithm to evaluate decision nets

1. Set the evidence variables of the current state
2. For each possible value of the decision node

a. set the decision node to that action
b. calculate the posterior probabilities for the parents of the utility
c. calculate the resulting utility

3. Choose the action with highest resulting utility.

The Value of Information
• information value theory – theory describing what information is best to acquire

in order to make a decision… one of the most important parts of decision making
is know what questions to ask.

o Tests/Questions can be expensive/hazardous but the information they yield
may overweigh those risks.

o sensing actions – actions preformed in order to acquire information
o value of information – the value of a piece of information is the

difference between the expected utility between the best possible actions
before and after information is acquired.

� Information has value to the extent that it is likely to cause a
change of plan and to the extent that the new plan will be
significantly better than the old one.

• value of perfect information (VPI) – value of information assuming exact
evidence Ej of some random variable is obtained:

() () () ()| , |
jkE j j jk e j jk

k

VPI E P E e EU E E e EU Eα α = = = −  ∑

o Properties

� VPI is non-negative: (), 0E jj E VPI E∀ ≥

� VPI is not additive (in general):

() () (),E j k E j E kVPI E E VPI E VPI E≠ +

� VPI is order-independent:

() () () () (), ,,
j kE j k E j E E k E E j E kVPI E E VPI E VPI E VPI E VPI E= + = +

• Information-Gathering Agent

o agent is myopic since the VPI formulation only accounts for the effect of
evidence Ej given that only that Ej is observed without including the
possibility that future evidence may make the observation of Ej more
valueable.

o To consider all possible sequences of information requests would require
conditional planning.

Making Complex Decisions

Sequential Decision Problems – an agent’s utility depends upon a sequence of
decisions.

• transition model T(s,a,s’) – the probability of transitioning from state s to s’ due
to action a.

o Markovian – the probability of reaching s’ from s depends only on state s
and not on the entire history of earlier states.

• environment history – the sequence of states on which utility depends.
o In state s, the agent receives a reward of R(s).
o environment history is simply a sum of rewards received.

• Markov Decision Process – a fully observable environment with a Markovian
transition model and additive rewards.

o Components
1. Initial state S0
2. Transition model T(s,a,s’)
3. Reward function R(s)

• policy ππππ - a plan of what action to take in a given state: ()t ta sπ=

o The quality of the policy is measured as the expected utility of all possible
environment histories generated by a policy.

o optimal policy ππππ* - a policy that yields the highest expected utility.
• Optimality for a sequential decision process

o Is the task episodic or continual?
� finite horizon – the decision process goes on for a fixed time N.

• With a finite horizon, the optimal action in a given state
could change over time � optimal policy is
nonstationary.

� infinite horizon – the process continues indefinitely.
• optimal policy is stationary.

o How to calculate the utility of state sequences?
� multiattribute utility theory – each state si is viewed as an

attribute of the state sequence []0 1, ,s s … .

� stationary preference assumption – if two state sequences,

[]0 1 2, , ,s s s … and []0 1 2', ', ',s s s … , begin with the same state,

0 0 's s= , then the preference order of the two sequences should be

the as sequences []1 2, ,s s … and []1 2', ',s s … are ordered.

� Under stationarity, there are only two possible utilities:
• Additive Rewards

[]() ()0 1 2 0
, , ,

T

h tt
U s s s R s

=
=∑…

• Discounted Rewards

[]() ()0 1 2 0
, , ,

T t
h tt

U s s s R sγ
=

=∑…

o γ is discount factor between 0 and 1 indicative of
preference between current and future rewards

� 0γ ≈ : future rewards are insignificant
� 1γ ≈ : equivalent to additive rewards

� equivalent to an interest rate of ()1/ 1γ − .

� How to calculate utility when history is infinite.
1. For discounted rewards with a maximum reward maxR and

1γ < , utility is still finite:

i. []() () ()0 1 2 max0
, , , / 1t

h tt
U s s s R s Rγ γ∞

=
= ≤ −∑…

2. Proper policy – the agent is guaranteed to get to a terminal

state eventually, so infinite sequences can be ignored.
3. Compare infinite sequences in terms of average reward per

time step.
o How to choose between policies?

� In general, a policy π generates a whole range of possible state
sequences, each with a certain probability determined by the
transition model.

� Value of policy is the expected sum of discounted rewards.
� optimal policy:

()*

0
arg max |t

tt
E R s

π
π γ π∞

=
 =  ∑

Value Iteration – an algorithm to calculate the optimal policy by calculating the utility
of each state and using state utilities to select an optimal action in each state.

• Utility of a state s by following policy π:

() () 0
0

| ,t
t

t

U s E R s s sπ γ π
∞

=

 = =  ∑

• True Utility of state s: () ()U s U sπ=

• From Maximum Expected Utility (MEU) principle, we have an optimal policy:

() ()*

'

arg max , , ' '
a s

T s a s U sπ = ∑

• Bellman Equation
() () () ()

'

max , , ' '
a

s

U s R s T s a s U sγ= + ∑

o The utility of a state is the immediate reward for that state plus the
expected discounted utility of the next state, assuming that the agent
chooses the optimal action.

o If there are n possible states, there will be n Bellman equations in n
unknowns. Unfortunately they are nonlinear.

• Iterative Approach – calculates the utility of each state on the basis of the utility
of their neighbors � propagates information through the state space via local
updates.

o Bellman Update: () () () ()1
'

max , , ' 'i i
a

s

U s R s T s a s U sγ+ = + ∑

o Converges to a unique solution whose corresponding policy is optimal.
� contraction – a unary function that, when applied to two different

values in turn, causes their corresponding output values to be
“closer together”, by at least some constant amount, than the
original argument were.

• has a single fixed point
• When applied to any argument, the output must be closer to

the fixed point than the original argument was.
� The Bellman update can be viewed as an operator B applied to the

set of utilities: 1i iU BU+ =

� max norm: ()max
s

U U s=

• the distance between 2 vectors is the maximum distance
between any two corresponding elements.

� The Bellman update is a contraction by a factor γ on the space of
utility vectors. That is, let Ui and Uj be two utility vectors, then

i j i jBU BU U Uγ− ≤ −

� if iU U− is the error in estimate Ui.

• value iteration converges exponentially in the number of
iterations. Unfortunately, this is degraded by 1γ ≈

• If Rmax is the bound on the rewards, then the number of
iterations required to reach an error of at most ε is,

() ()()
()

maxlog 2 log 1

log

R
N

ε γ
γ

 − −
=  

−  

� If the update is small, then the corresponding error is small

()1 11 /i i iU U U Uε γ γ ε+ +− < − ⇒ − <

Policy Iteration – an alternative way to find optimal policies by alternating between 2
steps: policy evaluation and policy iteration.

• Policy Evaluation – given a policy πi, calculate i
iU U π= .

o since policy is chosen, Bellman equations become linear:

() () ()() ()
'

, , ' 'i i
s

U s R s T s s s U sγ π= + ∑

o Thus, given n states, this can be solved using linear algebra in O(n3).
• Policy Iteration – calculate a new MEU policy πi+1 based on maximizing iU .

• Modified Policy Iteration
o Use simplified Bellman updates repeated k times for the evaluation step:

() () ()() ()1
'

, , ' 'i i i
s

U s R s T s s s U sγ π+ = + ∑

o Often more efficient than either value iteration or policy iteration
• Asynchronous Policy Iteration – pick any subset of states and apply either

policy evaluation or policy iteration to that subset.
o Under certain conditions on the initial policy and utility function, will still

converge to optimal policy
o Allows freedom to choose what states to work on.

Partially Observable MDPs (POMDP) – an MDP agent operating in a partially
observable environment where the optimal action is state s also depends on how much the
agent knows in state s. Defined in terms of a transition model (), , 'T s a s , a reward

function ()R s , and an observation model (),O s o that specifies the probability of

perceiving observation o in state s.
• belief-state b – the set of actual states the agent might be in, represented by a

probability distribution over all states.
o If b(s) was the previous belief state when the agent executes action a and

observes observation o, the new belief state is

() () () ()' ' ', , , '
s

b s O s o T s a s b s∝ ∑

• The optimal action depends only on the agent’s current belief state � a mapping

()* bπ from belief states to actions.

• Solving a POMDP on a physical state space can be reduced to solving an MDP
on the corresponding belief state space with transition model τ and rewards ρ.

o The probability of an observation o given action a in belief state b is,

() () () ()
'

| , ', , , '
s s

P o a b O s o T s a s b s=∑ ∑

o The probability of transitioning from belief state b to belief state b’ via
action a is,

() () () () ()
'

, , ' ' | , , , , , '
o s s

b a b P b o a b O s o T s a s b sτ =∑ ∑ ∑

o The reward function for belief states is, () () ()
s

b b s R sρ =∑

o Finding even approximately optimal POMDPs is difficult – PSPACE-hard

Learning from Observations

Forms of Learning
• Recall, in designing a learning agent, there is a performance element (decides on

actions) and a learning element (modifies performance element to make better
decisions).

• Issues in design:
1. Which components are to be learned
2. What type of feedback is available for learning

(a) supervised learning – learning a function using examples of
inputs and corresponding outputs.

(b) unsupervised learning – learning patterns in input without any
corresponding output values.

(c) reinforcement learning – learning by means of reinforcement
(positive/negative rewards).

3. What representation is used for learned components
4. How to incorporate available prior knowledge

Inductive Learning
• pure inductive inference (induction) – given a collection of examples of f,

return a hypothesis h that approximates f.
o generalization – a good hypothesis will predict unseen examples

correctly.
o hypothesis space H – the set of hypotheses to consider.
o consistent hypothesis – a hypothesis that agrees with all observed data.
o realizable – a learning problem in which the true function is contained

within the hypothesis space.
� prior knowledge can be used to define the hypothesis space to

make the problem realizable.
• Complexity (of hypothesis) vs. Expressiveness (of hypothesis space

o How to choose between multiple consistent hypotheses?
� Ockham’s razor – prefer the simplest hypothesis consistent with

data.
� For nondeterministic functions, there is a tradeoff between

complexity of the hypothesis and the degree of fit to the data.
o An expressive hypothesis space makes it possible to find a simple

hypothesis to fit the data. Restricting the expressiveness forces consistent
theories to be complex.

o There is a tradeoff between the expressiveness of a hypothesis space and
the complexity of finding simple, consistent hypotheses within it.

Learning Decision Trees
decision tree – a tree of rules for classifying a set of attributes (inputs) describing the
object, in which the tree represents the series of tests used to make a classification.
Decision tree has nice property that its learned function is human-readable.

• types of learning
o classification – learning a discrete valued function
o regression – learning a continuously valued function

• expressiveness of a decision tree
o some functions require tree exponentially large in # of inputs.

� Parity function – returns 1 iff an even number of inputs are 1.
� Majority function – returns 1 iff more than half of inputs are 1.

o Problem is fundamental
� For n-attributes, the truth table contains 2n rows. Hence, some

functions will always require at least that many bits to represent.

� Moreover, for 2n bits, there are 22
n

 possible functions!
• smallest possible decision tree

o We want to find smallest possible consistent decision tree (intractable).
Instead, we use greedy heuristic always selecting ‘most important
attribute’ as next in tree.

• decision tree learning algorithm
o Given a current leaf in the tree:

� If there both positive and negative examples, choose the ‘best’
attribute to split them

• If no attributes remain, noise is present. A simple way to
decide is take a majority vote of remaining examples.

� If there are only 1 type of example remaining, decide based on this
remaining label.

� If there are no examples remaining, no observation of this scenario
has been observed � use majority vote of parent node.

• choosing best attributes – an attribute is chosen at each leaf of the tree to divide
up all training examples relevant to that leaf thus branching the tree downward.
The attribute is chosen according to which maximizes information gain.

o expected amount of information – a concept from information theory in
which information content of an attribute is measured in bits.

() ()() () ()1 2
1

, , log
n

n i i
i

I P v P v P v P v
=

= −∑…

o number of bits required to classify after testing attribute A:

()
1

Remainder ,
v

i i i i

i i i i i

p n p n
A I

p n p n p n=

 +=  + + + ∑

where there are p positive examples and n negative examples in the
remaining training set and the i-th value of attribute A has pi positive and
ni negative examples at that level of the tree.

o information gain

() () ()1 Remaindert t tGain A Gain A A−= − ()0 ,
p n

Gain A I
p n p n

 
=  + + 

where t is the depth of the current branch.
• assessing performance of learning

o Algorithm
� Collect set of examples
� Divide set into disjoint sets: training and test randomly
� Apply learning to training set – hypothesis h
� Measure percentage of examples in test correctly classified by h.
� Continue process

o learning curve – the performance of the algorithm plotted against the
number of examples used to train it. If there exists a pattern in the data
being learned, the curve should approach 1 as the number of examples
grows.

o peeking – often test data is used to tune the algorithm, and reusing this
tainted test set is invalid since hypothesis was selected on basis of test-set
performance!

Statistical Learning Methods

Statistical Learning
• evidence – data; instantiations of random variables describing the domain.
• hypothesis – a probabilistic theory of how the domain works.
• Bayesian Learning – makes predictions on the basis of calculating the

probability of each hypothesis given the data. Prediction uses all the hypotheses
weighted by their probabilities.

o Probability of a hypothesis given data d:

() () ()| |i i iP h P h P h∝d d

o Probability of a data X given previous data d (hypotheses marginalized)

() () ()| | |i i
i

P X P X h P h=∑d d

� hypothesis prior: ()iP h

� data likelihood: ()| iP hd

o Observations assumed independently and identically distributed (IID):

() ()| |i j i
j

P h P d h= ∏d

o The true hypothesis eventually dominates the Bayesian prediction!
However, it is often difficult to achieve optimality.

• Maximum a Posteriori (MAP) hypothesis: an approximation of Bayesian
optimality through the most probable hypothesis;

()arg max |
i

MAP i
h

h P h= d

() ()| | MAPP X P X h≈d

o overfitting – a consequence of an over-expressive hypothesis space.
Hence, Bayesian and MAP learning use the prior to penalize complexity;
more complex hypotheses have lower priors.

o For deterministic hypotheses, ()| iP hd is 1 if hi is consistent with the data

and 0 otherwise. Hence, hMAP is the simplest logical theory that is
consistent with the data… an embodiment of Ockham’s razor.

o hMAP is equivalent to minimizing () ()2 2log | logi iP h P h− −d . From

information theory, ()2log | iP h− d is the number of bits required to

encode the data given the hypothesis and ()2log iP h− is the number of

bits required for the hypothesis � minimize data compression!
• Minimum Description Length (MDL) – attempts to minimize the size of

hypothesis and data encodings directly rather than work with probabilities.
• Maximum-Liklihood (ML) hypothesis – a simplification of MAP learning in

which a uniform prior is given over all hypotheses: hML.

Learning with Complete Data
• parameteric learning – finding numeric parameters for a probability model with

fixed structure.
• complete data – each data point contains values for every variable of the model.
• ML discrete parameteric learning – object is to find the parameters θ that

maximize the likelihood, or often, the log likelihood by the following method;
1. Write down an expression for the likelihood of the data as a function

of the parameters
2. Write down the derivative of the log likelihood w.r.t. each parameter.
3. Find the parameter values that make the derivative 0.

• When the data set is small, some events will not have been observed so the hMAP
gives them a probability of 0.

o In practice, often these events are given a count of 1 so they aren’t
excluded from the hypothesis.

• With complete data, the ML-parametric learning problem for a Bayesian network
decomposes into separate learning problems; one per parameter.

• Naïve Bayes Models – model in which ‘class’ variable C is the root of ‘attribute’
variables Xi. Thus, the probability of each class is given as,

() () ()1| , , |n i
i

P C x x P C P x C∝ ∏…

o Naïve Bayes scales well: for n Boolean attributes, there are 2n+1
parameters.

o No search for hMAP is required.
o No difficulty with noisy data and can give probabilistic predictions.

Reinforcement Learning

Reinforcement Learning (RL) – the task of using observed rewards to learn a
(approximately) optimal policy for an environment by choosing an action that will
maximize the expected reward given the current observed state of the agent.

• Reward (Reinforcement) – feedback that differentiates between good and bad
outcomes; thus allowing the agent to make choices.

• RL builds on the studies of animal psychologists in differentiating between
reward and other sensory inputs.

• Unlike MDPs, RL agents assume no prior knowledge of either the environment or
the reward function.

• In a sense, the RL task encompasses all of AI: an agent is placed in an
environment where it must behave successfully.

• Three types of agent designs:
o utility-based agent – learn a utility function for states, which the agent

will use to select actions in order to maximize expected utility.
� requires an environment model to map actions to successor states.

o Q-learning agent – learns a utility function on the state-action pairs; a so-
called Q-function.

� able to compare actions without knowing their outcomes.
� without knowing action outcome, look ahead is not possible.

o reflex agent – learns a policy that maps states to actions.

Passive Reinforcement Learning – the agent’s has a fixed policy π: perform
action ()sπ in state s. This is similar to policy iteration, but we lack the transition model

(), , 'T s a s and the reward function ()R s . Thus, the agent performs a set of trials and

uses the observed rewards to estimate the expected utility of each state ()U sπ . Starting

in state s we want to estimate the (discounted) expected reward from future states:

 () () 0
0

E | ,t
t

t

U s R s s sπ γ π
∞

=

 = =  ∑

• Direct Utility Estimation – the utility of a state is the expected reward starting
from that state, so each trial is a sample for each state visited.

o In this setting, the problem becomes a supervised learning problem of
mapping state to value � an inductive learning problem.

o This Monte-Carlo approach assumes independence of the utility function
between states. This ignores the fact that utilities are coupled in the
Bellman equations! Thus, this approach does not bootstrap!

� Without bootstrapping, invaluable information for learning is lost
and thus the technique converges very slowly.

• Adaptive Dynamic Programming (ADP) – as the agent moves through the
environment, the transition model is estimated and the MDP for the corresponding
model estimate is solved incrementally using dynamic programming.

o Learning the environment:
� The transition model (), , 'T s a s is estimated from the frequency

from state s to state s’ via action a.
o The MDP is solved using policy iteration or modified policy iteration.
o ADP is intractable for large state spaces.
o approximate ADP – bounds the number of adjustments per transition.

� prioritizing sweep heuristic – prefers to adjust states whose
successors have recently had a large utility adjustment.

• Temporal Difference (TD) Learning – a mixture of sampling and constraint
bootstrapping in which the values of the observed states are modified to reflect
the constraints between states given by the MDP.

o TD equation: given a learning rate α we update the expected utilities:

() () () () ()()'U s U s R s U s U sπ π π πα γ← + + −

The TD equations converges to the MDP equilibrium even though only
visited states are considered – the frequency of visits to a state are a
substitute for the explicit transition model.

o TD is an efficient approximation of ADP:
� the utility function is updated by local adjustments.
� TD only adjusts w.r.t. the observed transition and only makes a

single update per transition.

Active Reinforcement Learning – policy is no longer fixed; active agents must
decide on actions to take.

• Exploration
o greedy agent – follows the current “optimal policy” according to the

current estimates of the utility of each state.
� unlikely to converge to the “optimal policy” since neglected states

have poor estimates of their utility functions.
o Trade-off between exploration and exploitation

� exploitation – utilizing current knowledge to perform actions that
maximize rewards.

� exploration – trying suboptimal actions with the hope of
improving our current estimates for the utility function.

� n-armed bandit – a slot machine with n-levers – gambler must
choose to exploit the lever with highest payoff or explore other
levers to better estimate their payoff.

• Gittins index – a measure of this tradeoff in independent
situations (doesn’t extend to sequential decisions).

o Greedy in the limit of infinite exploration (GLIE) – exploration
schemes that are eventually optimal.

� simple GLIE scheme – try a random action with probability 1/ t ;
otherwise, perform the optimal action.

� optimistic utility estimates that favor unexplored states:

() () () () ()
'

max , , ' ' , ,
a

s

U s R s f T s a s U s N a sγ+ + = +   ∑

• U + is the optimistic utility function
• (),N a s is the # of times action a is done in state s.

• exploration function (),f u n - trade-off between greed and

curiosity that must increase in u and decrease in n. e.g.

(), eR n N
f u n

u otherwise

+ <
= 

• policy converges quickly while utility estimates converge
slowly, but all we need is correct policy!

• Action-Value Function
o TD-learning can be adapted to the active setting simply by choosing an

action based on the current U estimate via 1-step look-ahead. However,
we still have to learn the environment model to select actions.

o Q-learning – learns an action-value representation instead of utilities.
� Q-values: () ()max ,

a
U s Q a s=

� model-free – does not require an environment model for learning
or action selection.

� Bellman equations for Q-values:

() () () ()
'

'

, , , ' max ', '
a

s

Q a s R s T s a s Q a sγ= + ∑

� TD Q-learning: (model-free)

() () () () ()()
'

, , max ', ' ,
a

Q a s Q a s R s Q a s Q a sα γ← + + −

• TD doesn’t enforce consistency between values by using
the model so it learns slower!

o knowledge-based approach – method of representing the agent function
by building a model of some aspects of the agent’s environment.

� Has definite advantages over model-free learning agents as the
environment becomes more complex.

Generalization in Reinforcement Learning – we now consider methods for
scaling RL to worlds with enormous state spaces. Standard tabular RL is impractical
since the table has one entry per state and since most states would be visited rarely.

• function approximation - representing the value function in (approximate) non-
tabular forms, e.g., a linear combination of features of the state:

() () ()1 1
ˆ

n nU s f s f sθ θ θ= + +…

o Thus we want to learn the parameters 1, , nθ θ… to best approximate the

value function. Note: features can be non-linear in the state variables.
o Function approximation allows the agent to broadly generalize between

many states via states’ common attributes.
o Unfortunately, the best utility function may be a poor estimate!
o Online learning updates (Widrow-Hoff or Delta Rule): uses derivatives

of squared error to update parameters.

() ()() ()ˆ
ˆ

i i j
i

U s
u s U s θ

θθ θ α
θ

∂
← + −

∂

� TD update: () () ()() ()ˆ
ˆ ˆ'i i

i

U s
R s U s U s θ

θ θθ θ α γ
θ

∂
← + + −

∂

� Q: () () ()() ()
'

ˆ ,ˆ ˆmax ', ' ,i i
a

i

Q a s
R s Q a s Q a s θ

θ θθ θ α γ
θ

∂
← + + −

∂

o These updates converge to the optimal estimate for linear functions, but
can wildly diverge for non-linear ones.

• Function approximation can also be used to estimate the environment model:
o in observable models, this is a supervised task.
o in partially-observable models, DBNs with latent variables can be used.

Robotics

Robots – physical agents that perform tasks manipulating the physical world using
effectors based on observations from their sensors. Robots must deal with environments
that are partially observable, stochastic, dynamic, and continuous.

• Sensors – instruments for perceiving the environment.
o passive – capture signals generated from other sources in the environment.
o active – send energy into the environment and observe the response; e.g.

sonar. This technique runs the risk of interference from other sensors.
o range finders – measure distance to nearby objects.
o imaging sensors – cameras that provide images of the environment.

Vision techniques can then build models of the environment.
o proprioceptive sensors – inform the robot about its internal state.

� e.g. shaft decoders for odometry; force and torque sensors.
• Effectors – means by which robots move and change body shape or otherwise

manipulate their environment.
o kinematic state (pose) – 3 location coordinates (x,y,z) + 3 angular

coordinates (yaw, roll, pitch).
o dynamic state – 1 additional dimension for the change in each dimension

of the kinematic state.
o degrees of freedom (DOF) – the number of independent directions in

which an effector (robot) can move. Hand has 6 degrees of freedom.
� controllable DOF – the DOF that the robot can directly change.
� effective DOF – the DOF that the robot indirectly has (over time).
� holonomic – the controllable DOF is the same as effective DOF.
� nonholonomic – the effective DOF is greater than controllable.

Perception
• Kalman filters, HMMs, DBNs can be used for representing transition and sensor

models in a partially observable environment through belief states.
o filtering – task of updating the belief state. In a continuous environment,

the recursive update equations are modified by replacing summations with
integrations.

o transition (motion) model - ()1 | ,t t tP X X a+

o sensor (observation) model - ()1 1|t tP z X+ +

Localization – problem of determining where objects are in the robot’s world.
o tracking problem – initial pose of object is known and we wish to track

its changing pose over time.
o global localization – initial pose of object is unknown and we wish to

figure out where the robot is.
o kidnapping problem –the object to be localized is “kidnapped”.

• Motion Model: A crude approximation is to make each action into a instantaneous
specification of translational velocity νt and rotational velocity ωt over a small
interval of time ∆t:

�
1

cos
ˆ ˆ ˆ, , sin

t

t t

t t t t t t t

a
t

t

X f X X t

t

ν θ
ν ω ν θ

ω
+

∆     = = + ∆      ∆ 

o Uncertainty is added by Gaussian noise with a covariance Σx:

() ()1 1
ˆ| , ,t t t t xP X X a N X+ += Σ

• A sensor model.
o landmarks – stable recognizable features of the environment.

o Suppose the robot is at location (), ,R R R
t t tx y θ and an observed landmark

has know location (),i ix y then the range and bearing are:

()
() ()2 2

,ˆ , ,
arctan

R R
t i t i

R R R
Ri t t t t

Rt i
tR

t i

x x y y

h x y
y y

x x

θ
θ

 − + −  = =  − −  −  
z

o Assume there is Gaussian noise with covariance Σz:

() (), ,ˆ| ,i t t i t zP X N= Σz z

o Now assuming the errors for different beam directions are IID and we
have M beam directions to a landmark:

() (){ }2
,

1

ˆ| exp / 2
M

t t j j t
j

P X z z σ
=

∝ − −∏z

• Monte Carlo Localization – localization via a particle filter represent each belief
state as a single particle corresponding to possible states.

• Kalman Filter Localization – localization where the posterior (belief)

()1: 1: 1| ,t t tP X z a − is represented by a Gaussian.

o Gaussian beliefs are closed only under assumption that our motion model f
and measurement model h, are linear.

o Extended Kalman Filter (EKF) – a Kalman filter than linearizes f and h
by a first-degree approximation from the Taylor expansion.

• data association – problem of identifying which landmark is which.

Mapping – robot builds a map of its environment
• simultaneous localization and mapping (SLAM) – robot constructs map

without knowing where it is.

()
() () ()

1 1: 1 1:

1 1 1 1: 1: 1

, | ,

| , | , , | ,

t t t

t t t t t t t t t

P X M z a

P z X M P X X a P X M z a dX

+ +

+ + + −

∝

∫

o This is essentially the same flavor as localization with the caveat that the
space of poses and mappings is much larger.

• EKF approach uses Gaussian posterior with higher dimensional mean.
o As the robot explores, it gradually loses certainty of where it is; this can be

represented by error ellipses.
o When landmarks are observed, uncertainty in current and previous

locations is drastically reduced.
� There is still a problem with uncertainty in landmark estimation

and identification.
o Since map M’s size and the number of landmarks is not known in advance,

the parameter space may change adding new elements to the posterior.

Planning to Move
• point-to-point motion – problem of delivering the robot or its effector to a

desired target location.
• compliant motion – motion constrained to being always against an obstacle.
• workspace representation – representing the robot in terms of the location of its

movable parts in the coordinate system of the external world.
o linkage constraints – constraints on the space of attainable workspace.
o The robot’s task is often formulated in workspace coordinates of the

object’s it seeks to manipulate � inverse kinematics.
• configuration space – space of robot states defined by its degrees of freedom and

those of its various effectors. Each configuration of the robot is a point.
o kinematics – transforming configuration coordinates into workspace

coordinates via a series of coordinate transformations.
o inverse kinematics – transforming workspace coordinates into

configuration space. This is generally hard and ambiguous.
o free space – space of all configurations that a robot can obtain.
o occupied space – space of unattainable configurations.

• path planning problem – finding a path between configurations of the robot.
o cell decomposition – free space is decomposed into a finite number of

contiguous regions, cells, typically a regularly spaced grid.
� Problems:

• mixed cells – cells that overlap free and occupied space.
o if included, path planner may be unsound
o if excluded, path planner may be incomplete.

• the # of cells is exponential in the dimension, d, of space.
• the path’s may have sharp, unattainable changes.

o potential field – function that is higher further from boundaries.
� Trade-off: maximize clearance while minimizing path length.

o Skeletonization – reduces free space to a skeleton simplifying paths.
� skeleton - a 1D representation based on a Voronoi graph, or the

path that maximizes the distance between 2 or more obstacles.
o Probabilistic Roadmap – skeletonization by randomly sampling

configurations and keeping those that are attainable and connecting points
that are easy to transition between.

� Technically incomplete since a bad random sampling is possible.
� Scales to high dimensions and tends to produce safer paths.

Planning Uncertain Moves – problem is that uncertainty arises from partial
observablity and stochasticity of robot’s actions.

• Common practice is to use most likely state, however, in many cases, uncertainty
is too large and robot’s true position is not necessarily the ML estimate.

• For fully observable with uncertainty in state transitions, an MDP is good.
o navigation function – a policy of the MDP obtained by computing the

gradient of the value function.
• In partially observable situations, a POMDP seems appropriate.

o Belief states represent what agent knows and what it doesn’t
� information gathering – actions used to reduce uncertainty.

o Unfortunately it is not known how to apply POMDPs to continuous space.
o Hence, we attempt to minimize pose uncertainty.

� costal navigation – robot stays close to known landmarks to
decrease uncertainty and as new landmarks are observed, it is able
to explore new territory.

• robust methods – assume that each aspect of the problem has a bounded amount
of uncertainty but does not assign probabilities. Thus, the idea is to build plans
that will work irregardless of actual values.

o In the extreme, this becomes conformant planning.
o fine-motion planning – moving a robot (arm) in close proximity to an

object. Solutions are plans guaranteed to work in all situations.
� guarded motion – a motion command along with a termination

condition that will preempt the motion if it becomes true.
� compliant motion – allow robot to slide if motion would cause

collision.

