Propositional Puzzles

In Class Example

Use Propositional Logic to show that, in the game, "Heads I win, Tails you lose", I always win¹

 Make our objects: H - heads T - tails I - I win Y - you win
State your rules:

a. $H \Rightarrow I$ and $T \Rightarrow \neg Y$

Is that all? Don't forget, you must specify implicit rules, too! The system doesn't know that heads and tails are mutually exclusive.

b. $H \otimes T$ and $I \otimes Y$

3. Convert to CNF

$$\neg H \lor I \qquad \neg T \lor \neg Y \qquad (H \lor T) \land (\neg H \lor \neg T)$$
$$(I \lor Y) \land (\neg I \lor \neg Y)$$

- 4. We want to prove *I*, so insert the literal $\neg I$ for the proof by contradiction. Now start resolving clauses:
 - a. $\neg T \lor \neg Y$ and $H \lor T \rightarrow H \lor \neg Y$
 - b. $\neg H \lor I$ and $H \lor \neg Y \rightarrow I \lor \neg Y$
 - c. $\neg I$ and $I \lor \neg Y \rightarrow \neg Y$
 - d. $I \lor Y$ and $\neg Y \rightarrow I$
 - e. *I* and $\neg I \rightarrow \{\}$ -- we have a *contradiction* $\rightarrow I$ is true.

Solve the Mystery

The following example was taken from the following website:

http://logic.stanford.edu/classes/cs157/2005fall/notes/chap05.pdf

- There are three suspects for a murder: Adams, Brown, and Clark.
- Adams says"I didn't do it. The victim was old acquaintance of Brown's. But Clark hated him."
- Brown states "I didn't do it. I didn't know the guy. Besides I was out of town all the week."
- Clark says"I didn't do it. I saw both Adams and Brown downtown with the victim that day; one of them must have done it."
- Assume that the two innocent men are telling the truth, but that the guilty man might not be.
- Write out the facts as sentences in Propositional Logic, and use propositional resolution to solve the crime.

¹ Example taken from <u>http://logic.stanford.edu/classes/cs157/2005fall/notes/chap05.pdf</u>