
TIPS ON A2
Some issues have arisen in office hours that might be relevant to your assignment. Below
is a quick distillation of advice and clarifications about assignment 2. If you’re stuck or
confused, this might just help.

1) What functions you actually need to write and what should they do?
Much of the code for solving search and csp problems is written for you in the code for
the textbook (AIMA). You will need to add the following along with several helper
functions to produce the appropriate functionality:

Tracks problem:
1. Loose ends
(defun count-loose-ends (track) …)

3. Weekly connected components
(defun count-wccs (track) …)

4. Formulate as a search problem
Just like the problem set you completed, formulatin g a search problem
requires an initial state, goal test, successor fun ction, and cost
function. Remember that for local search problems, h-cost need not
underestimate the distance to the goal like in tree search. Here, the
successor function is decomposed into an action fun ction and a result
function. Note that some search algorithms only ca re about random
actions (like simulated annealing), so to use those , you don’t even need
an action function if you have a properly written r andom-action
function.

(defstructure (track-local-problem (:include proble m)) …)

(defmethod h-cost ((problem track-local-problem) st ate) …)

(defmethod goal-test ((problem track-local-problem) state) …)

EITHER:
(defmethod action ((problem track-local-problem) st ate) …)
OR
(defmethod random-action ((problem track-local-prob lem) state) …)

(defmethod result ((problem track-local-problem) ac tion state) …)

Sudoku Problem:
9. Define sudoku as a CSP
You’ll need to define the csp type (often specifyin g an alternate
constructor so that you can set up the variables, c onstraints, and
domains appropriately) and one or more constraint t ypes, along with an
allowed? function for each. See the n-queens examp le for help.

(defstruct (sudoku-csp (:include csp) (:constructor create-sudoku-csp))
…)

(defun make-sudoku-csp () …)

(defstruct (<a-constraint-type> (:include constrain t))

(defmethod allowed? (vars values (constraint <a-con straint-type>))

10. Backtracking search with guessing penalty

Make a new backtracking search function that either returns two values
(the solution and the number of guesses) or a list containing the
solution and num guesses.

(defun backtracking-search-with-cost (csp
 &optional (assignment (initial-csp-state csp))
 &key (select-unassigned-variable #'next-vari able)
 (order-domain-values #'default-order))

11. Backtracking search with guessing penalty and e xtra inference
You need to write code that eliminates possible val ues for variables
before backtracking search decides what variable to select and
instantiate. Ideally, you let the backtracking sea rch code that is
already written take care of actually adding and de leting variables from
the current assignment. Just focus on constraining the result of
(current-legal-values) by pruning the set of allowa ble values in each
variable’s domain. This is what forward checking a nd arc consistency
do. There are specialized inference functions for sudoku, like
scanning. See the references in the assignment fo r a description of
these techniques.

(defun backtracking-search-with-inference (csp
 &optional (assignment (initial-csp-state csp))
 &key (select-unassigned-variable #'next-vari able)
 (order-domain-values #'default-order))

2) How to build up a function incrementally

In writing LISP code, DO NOT write your entire program then start plugging in test
cases, thereby initiating the debugging process. One of LISP’s weaknesses is it’s lack of
large-scale debugging utilities.

However, one of the strengths of LISP is its functional approach to programming. You
should write and test functions INDEPENDENTLY. Since functions return values, you
can simply test your function on “corner cases” – hard examples that demonstrate that the
program is functioning as it is supposed to.

Another advantageous aspect of LISP is its Bottom-Up/Top-Down programming style.
While this class will not use all aspects of this, you should build small (easy) functions
that do common actions (e.g. iota). You should test these functions thoroughly, and then
use them to implement your program.

Summary - Rapid Prototyping

1. Write a specification for a function
2. Write the function

a. Implement dependent functions with stubs to be done upon completion of
this program.

3. Test the functions individually – do not proceed until each function works
independently; debugging an entire project at once in LISP is a painstaking.
Printing out values of variables in loops and other crucial locations can reveal
key aspects of your program.

4. After building and testing your functions, integrate them by implementing stubs in
the same manner. Continue until entire program is implemented and correct.

Example: N-Queens CSP – writing the make-nqueens-csp method

1. Write and test the iota method
2. Write a stub for make-nqueens-csp:

(defun make-nqueens-csp (&key (n 8))
3. Check the variable creation (make sure it returns the values you want):

(iota n 1)
4. Add :variables into your n-queens constructor:

(defun make-nqueens-csp (&key (n 8))
 (create-nqueens-csp
 :n n :variables (iota n 1)))

5. Check the domain creation (make sure it returns the values you want):
(mapcar #'(lambda (var) (cons var (iota n 1)))

(iota n 1))
6. Continue in this manner defining the entire method

(defun make-nqueens-csp (&key (n 8))
 (create-nqueens-csp
 :n n :variables (iota n 1)
 :domains (mapcar #'(lambda (var) (cons var (iota n 1)))

 (iota n 1))
 :constraints (mapcan #'(lambda (var)
 (mapcar #'(lambda (var2)
 (make-nqueens-constraint :variables (list
var var2)))
 (iota (- n var) (1+ var))))
 (iota n 1))))

7. Check your function make-nqueens-csp for several “important” values of n.
8. Continue writing all your functions and their supporting methods in this manner.

3) Dealing with the AIMA code:
You’ll need to get the latest version of the class code in order to do this assignment. The
code has changed since A0 – search and csp algorithms have been added and several
bugs have been corrected. To do this, repeat the steps of the lisp tutorial that involve
copying over the code-2e-188.ZIP archive, unpacking it, and editing aima.lisp to point to
your directory.

You’ll also need some code related directly to this assignment. Specifically, you’ll need
to download:
- tracks.lisp
- track-display.lisp
- sudoku-puzzles.lisp
- print-sudoku.lisp
All of these can be found through links from the A2 page. You’ll need to load them all,
along with the AIMA code, in order to get your functions to work. If things don’t load,
make sure you’re loading them in the right order: AIMA code first, then the files as they
are listed above. Other orders might work, but some don’t.

Finally, make sure you compile your code with (aima-compile). This will make
everything run much faster. After you type (load “aima.lisp”) but before you type (aima-
load ‘search), type (aima-compile). You only need to do this once. If you ever get new
versions of the class code, you’ll need to do it again. Compiling takes a minute, but it
will save you many in the long run.

4) Helpful tips from a fellow student:

1. The description of the connections? function fo r the railroad stuff
is misleading. connections? returns T if a piece C AN have connections
at a given edge. To test whether it DOES, you need to see if the
adjacent piece can also have connections at that ed ge.

2. To access a piece, use (aref name-of-track x-co ord y-coord).

3. A track is a 2 dimensional array, so to get the width or the height,
use

 (array-dimensions name-of-track) gives a 2 me mber list with width
and height

 (array-dimension name-of-track 0) gives the w idth

 (array-dimension name-of-track 1) gives the he ight

4. iota makes a list of numbers from 1 to n.

5. It's very useful to know how to use loop (a lot of people who've
only had cs61a have never used it, let alone loops within loops).

6. The most important thing to know is that this p roject takes FOREVER,
so get started early, especially since you'll need to understand all the
code and figure out how to debug when nothing will run.

